Visible to the public Biblio

Filters: Keyword is keystroke dynamics authentication systems  [Clear All Filters]
2017-03-08
Darabseh, A., Namin, A. Siami.  2015.  On Accuracy of Keystroke Authentications Based on Commonly Used English Words. 2015 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–8.

The aim of this research is to advance the user active authentication using keystroke dynamics. Through this research, we assess the performance and influence of various keystroke features on keystroke dynamics authentication systems. In particular, we investigate the performance of keystroke features on a subset of most frequently used English words. The performance of four features such as i) key duration, ii) flight time latency, iii) digraph time latency, and iv) word total time duration are analyzed. Experiments are performed to measure the performance of each feature individually as well as the results from the different subsets of these features. Four machine learning techniques are employed for assessing keystroke authentications. The selected classification methods are two-class support vector machine (TC) SVM, one-class support vector machine (OC) SVM, k-nearest neighbor classifier (K-NN), and Naive Bayes classifier (NB). The logged experimental data are captured for 28 users. The experimental results show that key duration time offers the best performance result among all four keystroke features, followed by word total time. Furthermore, our results show that TC SVM and KNN perform the best among the four classifiers.

Morales, A., Luna-Garcia, E., Fierrez, J., Ortega-Garcia, J..  2015.  Score normalization for keystroke dynamics biometrics. 2015 International Carnahan Conference on Security Technology (ICCST). :223–228.

This paper analyzes score normalization for keystroke dynamics authentication systems. Previous studies have shown that the performance of behavioral biometric recognition systems (e.g. voice and signature) can be largely improved with score normalization and target-dependent techniques. The main objective of this work is twofold: i) to analyze the effects of different thresholding techniques in 4 different keystroke dynamics recognition systems for real operational scenarios; and ii) to improve the performance of keystroke dynamics on the basis of target-dependent score normalization techniques. The experiments included in this work are worked out over the keystroke pattern of 114 users from two different publicly available databases. The experiments show that there is large room for improvements in keystroke dynamic systems. The results suggest that score normalization techniques can be used to improve the performance of keystroke dynamics systems in more than 20%. These results encourage researchers to explore this research line to further improve the performance of these systems in real operational environments.

Darabseh, A., Namin, A. S..  2015.  On Accuracy of Classification-Based Keystroke Dynamics for Continuous User Authentication. 2015 International Conference on Cyberworlds (CW). :321–324.

The aim of this research is to advance the user active authentication using keystroke dynamics. Through this research, we assess the performance and influence of various keystroke features on keystroke dynamics authentication systems. In particular, we investigate the performance of keystroke features on a subset of most frequently used English words. The performance of four features such as i) key duration, ii) flight time latency, iii) diagraph time latency, and iv) word total time duration are analyzed. Two machine learning techniques are employed for assessing keystroke authentications. The selected classification methods are support vector machine (SVM), and k-nearest neighbor classifier (K-NN). The logged experimental data are captured for 28 users. The experimental results show that key duration time offers the best performance result among all four keystroke features, followed by word total time.