Biblio
Free-text keystroke authentication has been demonstrated to be a promising behavioral biometric. But unlike physiological traits such as fingerprints, in free-text keystroke authentication, there is no natural way to identify what makes a sample. It remains an open problem as to how much keystroke data are necessary for achieving acceptable authentication performance. Using public datasets and two existing algorithms, we conduct two experiments to investigate the effect of the reference profile size and test sample size on False Alarm Rate (FAR) and Imposter Pass Rate (IPR). We find that (1) larger reference profiles will drive down both IPR and FAR values, provided that the test samples are large enough, and (2) larger test samples have no obvious effect on IPR, regardless of the reference profile size. We discuss the practical implication of our findings.
Keystroke dynamics is a form of behavioral biometrics that can be used for continuous authentication of computer users. Many classifiers have been proposed for the analysis of acquired user patterns and verification of users at computer terminals. The underlying machine learning methods that use Gaussian density estimator for outlier detection typically assume that the digraph patterns in keystroke data are generated from a single Gaussian distribution. In this paper, we relax this assumption by allowing digraphs to fit more than one distribution via the Gaussian Mixture Model (GMM). We have conducted an experiment with a public data set collected in a controlled environment. Out of 30 users with dynamic text, we obtain 0.08% Equal Error Rate (EER) with 2 components by using GMM, while pure Gaussian yields 1.3% EER for the same data set (an improvement of EER by 93.8%). Our results show that GMM can recognize keystroke dynamics more precisely and authenticate users with higher confidence level.