Visible to the public Biblio

Filters: Keyword is data collection software  [Clear All Filters]
2017-03-08
Mondal, S., Bours, P..  2015.  Continuous Authentication in a real world settings. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1–6.

Continuous Authentication by analysing the user's behaviour profile on the computer input devices is challenging due to limited information, variability of data and the sparse nature of the information. As a result, most of the previous research was done as a periodic authentication, where the analysis was made based on a fixed number of actions or fixed time period. Also, the experimental data was obtained for most of the previous research in a very controlled condition, where the task and environment were fixed. In this paper, we will focus on actual continuous authentication that reacts on every single action performed by the user. The experimental data was collected in a complete uncontrolled condition from 52 users by using our data collection software. In our analysis, we have considered both keystroke and mouse usages behaviour pattern to avoid a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The result we have obtained from this research is satisfactory enough for further investigation on this domain.

Mondal, S., Bours, P..  2015.  Context independent continuous authentication using behavioural biometrics. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–8.

In this research, we focus on context independent continuous authentication that reacts on every separate action performed by a user. The experimental data was collected in a complete uncontrolled condition from 53 users by using our data collection software. In our analysis, we considered both keystroke and mouse usage behaviour patterns to prevent a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The best result obtained from this research is that for 47 bio-metric subjects we have on average 275 actions required to detect an imposter where these biometric subjects are never locked out from the system.