Visible to the public Biblio

Filters: Keyword is Mouse Dynamics  [Clear All Filters]
2020-01-28
Handa, Jigyasa, Singh, Saurabh, Saraswat, Shipra.  2019.  A Comparative Study of Mouse and Keystroke Based Authentication. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :670–674.

One of the basic behavioural biometric methods is keystroke element. Being less expensive and not requiring any extra bit of equipment is the main advantage of keystroke element. The primary concentration of this paper is to give an inevitable review of behavioural biometrics strategies, measurements and different methodologies and difficulties and future bearings specially of keystroke analysis and mouse dynamics. Keystrokes elements frameworks utilize insights, e.g. time between keystrokes, word decisions, word mixes, general speed of writing and so on. Mouse Dynamics is termed as the course of actions captured from the moving mouse by an individual when interacting with a GUI. These are representative factors which may be called mouse dynamics signature of an individual, and may be used for verification of identity of an individual. In this paper, we compare the authentication system based on keystroke dynamics and mouse dynamics.

2017-03-08
Mondal, S., Bours, P..  2015.  Continuous Authentication in a real world settings. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1–6.

Continuous Authentication by analysing the user's behaviour profile on the computer input devices is challenging due to limited information, variability of data and the sparse nature of the information. As a result, most of the previous research was done as a periodic authentication, where the analysis was made based on a fixed number of actions or fixed time period. Also, the experimental data was obtained for most of the previous research in a very controlled condition, where the task and environment were fixed. In this paper, we will focus on actual continuous authentication that reacts on every single action performed by the user. The experimental data was collected in a complete uncontrolled condition from 52 users by using our data collection software. In our analysis, we have considered both keystroke and mouse usages behaviour pattern to avoid a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The result we have obtained from this research is satisfactory enough for further investigation on this domain.