Visible to the public Biblio

Filters: Keyword is machine control  [Clear All Filters]
2020-07-24
Voronkov, Oleg Yu..  2019.  Synergetic Synthesis of the Hierarchical Control System of the “Flying Platform”. 2019 III International Conference on Control in Technical Systems (CTS). :23—26.
The work is devoted to the synthesis of an aircraft control system using a synergetic control theory. The paper contains a general description of the apparatus and its control system, a synthesis of control laws, and a computer simulation. The relevance of the work consists in the need to create a vertically take-off aircraft of the “flying platform” type in order to increase the efficiency of rescue operations in disaster zones where helicopters and other modern means can't cope with the task. The scientific novelty of the work consists in the application of synergetic approaches to the development of a hierarchical system for balancing the vehicle spatial position and to the coordinating energy-saving control of electric motors that receive energy from a turbine generator.
2020-01-20
Melendez, Carlos, Diaz, Matias, Rojas, Felix, Cardenas, Roberto, Espinoza, Mauricio.  2019.  Control of a Double Fed Induction Generator based Wind Energy Conversion System equipped with a Modular Multilevel Matrix Converter. 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). :1–11.

During the last years, the Modular Multilevel Matrix Converter (M3C) has been investigated due to its capacity tooperate in high voltage and power levels. This converter is appropriate for Wind Energy Conversion Systems (WECSs), due to its advantages such as redundancy, high power quality, expandability and control flexibility. For Double-Fed Induction Generator (DFIG) WECSs, the M3C has advantages additional benefits, for instance, high power density in the rotor, with a more compact modular converter, and control of bidirectional reactive power flow. Therefore, this paper presents a WECS composed of a DFIG and an M3C. The modelling and control of this WECS topology are described and analyzed in this paper. Additionally, simulation results are presented to validate the effectiveness of this proposal.

2015-04-30
Zhuoping Yu, Junxian Wu, Lu Xiong.  2014.  Research of stability control of distributed drive electric vehicles under motor failure modes. Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo. :1-5.

With the application and promotion of electric vehicles, vehicle security problems caused by actuator reliability have become increasingly prominent. Firstly, the paper analyses and sums motor failure modes and their effects of permanent magnet synchronous motor (PMSM) , which is commonly used on electric vehicles. And then design a hierarchical structure of the vehicle control strategies and the corresponding algorithms, and adjust based on the different failure modes. Finally conduct simulation conditions in CarSim environment. Verify the control strategy and algorithm can maintain vehicle stability and reduce the burden on driver under motor failure conditions.