Biblio
Recognising user's risky behaviours in real-time is an important element of providing appropriate solutions and recommending suitable actions for responding to cybersecurity threats. Employing user modelling and machine learning can make this process automated by requires high-performance intelligent agent to create the user security profile. User profiling is the process of producing a profile of the user from historical information and past details. This research tries to identify the monitoring factors and suggests a novel observation solution to create high-performance sensors to generate the user security profile for a home user concerning the user's privacy. This observer agent helps to create a decision-making model that influences the user's decision following real-time threats or risky behaviours.
In this paper we use car games as a simulator for real automobiles, and generate driving logs that contain the vehicle data. This includes values for parameters like gear used, speed, left turns taken, right turns taken, accelerator, braking and so on. From these parameters we have derived some more additional parameters and analyzed them. As the input from automobile driver is only routine driving, no explicit feedback is required; hence there are more chances of being able to accurately profile the driver. Experimentation and analysis from this logged data shows possibility that driver profiling can be done from vehicle data. Since the profiles are unique, these can be further used for a wide range of applications and can successfully exhibit typical driving characteristics of each user.