Biblio
Error correction in quantum cryptography based on artificial neural networks is a new and promising solution. In this paper the security verification of this method is discussed and results of many simulations with different parameters are presented. The test scenarios assumed partially synchronized neural networks, typical for error rates in quantum cryptography. The results were also compared with scenarios based on the neural networks with random chosen weights to show the difficulty of passive attacks.
The majority of applications use a prompt for a username and password. Passwords are recommended to be unique, long, complex, alphanumeric and non-repetitive. These reasons that make passwords secure may prove to be a point of weakness. The complexity of the password provides a challenge for a user and they may choose to record it. This compromises the security of the password and takes away its advantage. An alternate method of security is Keystroke Biometrics. This approach uses the natural typing pattern of a user for authentication. This paper proposes a new method for reducing error rates and creating a robust technique. The new method makes use of multiple sensors to obtain information about a user. An artificial neural network is used to model a user's behavior as well as for retraining the system. An alternate user verification mechanism is used in case a user is unable to match their typing pattern.