Visible to the public Biblio

Filters: Author is Voznak, Miroslav  [Clear All Filters]
2020-05-08
Niemiec, Marcin, Mehic, Miralem, Voznak, Miroslav.  2018.  Security Verification of Artificial Neural Networks Used to Error Correction in Quantum Cryptography. 2018 26th Telecommunications Forum (℡FOR). :1—4.

Error correction in quantum cryptography based on artificial neural networks is a new and promising solution. In this paper the security verification of this method is discussed and results of many simulations with different parameters are presented. The test scenarios assumed partially synchronized neural networks, typical for error rates in quantum cryptography. The results were also compared with scenarios based on the neural networks with random chosen weights to show the difficulty of passive attacks.

2017-05-18
Lin, Jerry Chun-Wei, Liu, Qiankun, Fournier-Viger, Philippe, Hong, Tzung-Pei, Zhan, Justin, Voznak, Miroslav.  2016.  An Efficient Anonymous System for Transaction Data. Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016. :28:1–28:6.

k-anonymity is an efficient way to anonymize the relational data to protect privacy against re-identification attacks. For the purpose of k-anonymity on transaction data, each item is considered as the quasi-identifier attribute, thus increasing high dimension problem as well as the computational complexity and information loss for anonymity. In this paper, an efficient anonymity system is designed to not only anonymize transaction data with lower information loss but also reduce the computational complexity for anonymity. An extensive experiment is carried to show the efficiency of the designed approach compared to the state-of-the-art algorithms for anonymity in terms of runtime and information loss. Experimental results indicate that the proposed anonymous system outperforms the compared algorithms in all respects.