Visible to the public Biblio

Filters: Keyword is literature review  [Clear All Filters]
2022-12-09
Waguie, Francxa Tagne, Al-Turjman, Fadi.  2022.  Artificial Intelligence for Edge Computing Security: A Survey. 2022 International Conference on Artificial Intelligence in Everything (AIE). :446—450.
Edge computing is a prospective notion for expanding the potential of cloud computing. It is vital to maintaining a decent atmosphere free of all forms of security and breaches in order to continue utilizing computer services. The security concerns surrounding the edge computing environment has been impeded as a result of the security issues that surround the area. Many researchers have looked into edge computing security issues, however, not all have thoroughly studied the needs. Security requirements are the goals that specify the capabilities and operations that a process that is carried out by a system in order to eliminate various security flaws. The purpose of this study is to give a complete overview of the many different artificial intelligence technologies that are now being utilized for edge computing security with the intention of aiding research in the future in locating research potential. This article analyzed the most recent research and shed light on the following topics: state-of-the-art techniques used to combat security threats, technological trends used by the method, metrics utilize to assess the techniques' ability, and opportunities of research for future researchers in the area of artificial intelligence for edge computing security.
2018-05-09
Al-Zyoud, Mahran, Williams, Laurie, Carver, Jeffrey C..  2017.  Step One Towards Science of Security. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :31–35.

Science of security necessitates conducting methodologically-defensible research and reporting such research comprehensively to enable replication and future research to build upon the reported study. The comprehensiveness of reporting is as important as the research itself in building a science of security. Key principles of science - replication, meta-analysis, and theory building - are affected by the ability to understand the context and findings of published studies. The goal of this paper is to aid the security research community in understanding the state of scientific communication through the analysis of research published at top security conferences. To analyze scientific communication, we use literature on scientific evaluation to develop a set of rubrics as a guide to check the comprehensiveness of papers published in the IEEE Security and Privacy and ACM Computer and Communications Security conferences. Our review found that papers often omit certain types of information from their reports, including research objectives and threats to validity. Our hope is that this effort sheds some light on one of the essential steps towards advancement of the science of security.

2017-07-06
Burcham, Morgan, Al-Zyoud, Mahran, Carver, Jeffrey C., Alsaleh, Mohammed, Du, Hongying, Gilani, Fida, Jiang, Jun, Rahman, Akond, Kafalı, Özgür, Al-Shaer, Ehab et al..  2017.  Characterizing Scientific Reporting in Security Literature: An Analysis of ACM CCS and IEEE S&P Papers. Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. :13–23.

Scientific advancement is fueled by solid fundamental research, followed by replication, meta-analysis, and theory building. To support such advancement, researchers and government agencies have been working towards a "science of security". As in other sciences, security science requires high-quality fundamental research addressing important problems and reporting approaches that capture the information necessary for replication, meta-analysis, and theory building. The goal of this paper is to aid security researchers in establishing a baseline of the state of scientific reporting in security through an analysis of indicators of scientific research as reported in top security conferences, specifically the 2015 ACM CCS and 2016 IEEE S&P proceedings. To conduct this analysis, we employed a series of rubrics to analyze the completeness of information reported in papers relative to the type of evaluation used (e.g. empirical study, proof, discussion). Our findings indicated some important information is often missing from papers, including explicit documentation of research objectives and the threats to validity. Our findings show a relatively small number of replications reported in the literature. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2017-04-10
Burcham, Morgan, Al-Zyoud, Mahran, Carver, Jeffrey C., Alsaleh, Mohammed, Du, Hongying, Gilani, Fida, Jiang, Jun, Rahman, Akond, Kafalı, Özgür, Al-Shaer, Ehab et al..  2017.  Characterizing Scientific Reporting in Security Literature: An Analysis of ACM CCS and IEEE S&P Papers. Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. :13–23.

Scientific advancement is fueled by solid fundamental research, followed by replication, meta-analysis, and theory building. To support such advancement, researchers and government agencies have been working towards a "science of security". As in other sciences, security science requires high-quality fundamental research addressing important problems and reporting approaches that capture the information necessary for replication, meta-analysis, and theory building. The goal of this paper is to aid security researchers in establishing a baseline of the state of scientific reporting in security through an analysis of indicators of scientific research as reported in top security conferences, specifically the 2015 ACM CCS and 2016 IEEE S&P proceedings. To conduct this analysis, we employed a series of rubrics to analyze the completeness of information reported in papers relative to the type of evaluation used (e.g. empirical study, proof, discussion). Our findings indicated some important information is often missing from papers, including explicit documentation of research objectives and the threats to validity. Our findings show a relatively small number of replications reported in the literature. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2017-03-20
Carver, Jeffrey C., Burcham, Morgan, Kocak, Sedef Akinli, Bener, Ayse, Felderer, Michael, Gander, Matthias, King, Jason, Markkula, Jouni, Oivo, Markku, Sauerwein, Clemens et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security: An Analysis of the 2015 IEEE Security & Privacy Proceedings. Proceedings of the Symposium and Bootcamp on the Science of Security. :38–51.

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2017-03-17
Carver, Jeffrey C., Burcham, Morgan, Kocak, Sedef Akinli, Bener, Ayse, Felderer, Michael, Gander, Matthias, King, Jason, Markkula, Jouni, Oivo, Markku, Sauerwein, Clemens et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security: An Analysis of the 2015 IEEE Security & Privacy Proceedings. Proceedings of the Symposium and Bootcamp on the Science of Security. :38–51.

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.