Biblio
Return Oriented Programming is one of the most important software security challenges nowadays. It exploits memory vulnerabilities to control the state of the program and hijacks its control flow. Existing defenses usually focus on how to protect the control flow or face the challenge of how to maintain the taint markings for memory data. In this paper, we directly focus on the adversary-controlled states, simplify the classic dynamic taint analysis method to only track registers and propose Hardware-based Adversary-controlled States Tracking (HAST). HAST dynamically tracks registers that may be controlled by the adversary to detect ROP attack. It is transparent to user application and makes few modifications to existing hardware. Our evaluation demonstrates that HAST will introduce almost no performance overhead and can effectively detect ROP attacks without false positives on the tested common Linux applications.
This paper presents a multilayer protection approach to guard programs against Return-Oriented Programming (ROP) attacks. Upper layers validate most of a program's control flow at a low computational cost; thus, not compromising runtime. Lower layers provide strong enforcement guarantees to handle more suspicious flows; thus, enhancing security. Our multilayer system combines techniques already described in the literature with verifications that we introduce in this paper. We argue that modern versions of x86 processors already provide the microarchitectural units necessary to implement our technique. We demonstrate the effectiveness of our multilayer protection on a extensive suite of benchmarks, which includes: SPEC CPU2006; the three most popular web browsers; 209 benchmarks distributed with LLVM and four well-known systems shown to be vulnerable to ROP exploits. Our experiments indicate that we can protect programs with almost no overhead in practice, allying the good performance of lightweight security techniques with the high dependability of heavyweight approaches.
Despite decades of research on software diversification, only address space layout randomization has seen widespread adoption. Code randomization, an effective defense against return-oriented programming exploits, has remained an academic exercise mainly due to i) the lack of a transparent and streamlined deployment model that does not disrupt existing software distribution norms, and ii) the inherent incompatibility of program variants with error reporting, whitelisting, patching, and other operations that rely on code uniformity. In this work we present compiler-assisted code randomization (CCR), a hybrid approach that relies on compiler-rewriter cooperation to enable fast and robust fine-grained code randomization on end-user systems, while maintaining compatibility with existing software distribution models. The main concept behind CCR is to augment binaries with a minimal set of transformation-assisting metadata, which i) facilitate rapid fine-grained code transformation at installation or load time, and ii) form the basis for reversing any applied code transformation when needed, to maintain compatibility with existing mechanisms that rely on referencing the original code. We have implemented a prototype of this approach by extending the LLVM compiler toolchain, and developing a simple binary rewriter that leverages the embedded metadata to generate randomized variants using basic block reordering. The results of our experimental evaluation demonstrate the feasibility and practicality of CCR, as on average it incurs a modest file size increase of 11.46% and a negligible runtime overhead of 0.28%, while it is compatible with link-time optimization and control flow integrity.
With the implementation of W ⊕ X security model on computer system, Return-Oriented Programming(ROP) has become the primary exploitation technique for adversaries. Although many solutions that defend against ROP exploits have been proposed, they still suffer from various shortcomings. In this paper, we propose a new way to mitigate ROP attacks that are based on return instructions. We clean the scratch registers which are also the parameter registers based on the features of ROP malicious code and calling convention. A prototype is implemented on x64-based Linux platform based on Pin. Preliminary experimental results show that our method can efficiently mitigate conventional ROP attacks.
Return Oriented Programming is one of the major challenges for software security nowadays. It can bypass Data Execution Prevention (DEP) mechanism by chaining short instruction sequences from existing code together to induce arbitrary code execution. Existing defenses are usually trade-offs between practicality, security, and performance. In this paper, we propose PMUe, a low-cost hardware ROP detection approach that detects ROP attack based on three inherent properties of ROP. It is transparent to user applications and can be regarded as a small extension to existing Performance Monitoring Unit in commodity processors. Our evaluation demonstrates that PMUe can effectively detect ROP attack with negligible performance overhead.
Control-hijacking attacks include code injection attacks and code reuse attacks. In recent years, with the emergence of the defense mechanism data-execution prevention(DEP), code reuse attacks have become mainstream, such as return-oriented programming(ROP), Jump-Oriented Programming(JOP), and Counterfeit Object-oriented Programming(COOP). And a series of defensive measures have been proposed, such as DEP, address space layout randomization (ASLR), coarse-grained Control-Flow Integrity(CFI) and fine-grained CFI. In this paper, we propose a new attack called function-oriented programming(FOP) to construct malicious program behavior. FOP takes advantage of the existing function of the C program to induce attack. We propose concrete algorithms for FOP gadgets and build a tool to identify FOP gadgets. FOP can successfully bypass coarse-grained CFI, and FOP also can bypass some existing fine-grained CFI technologies, such as shadow stack technology. We show a real-world attack for proftpd1.3.0 server in the Linux x64 environment. We believe that the FOP attack will encourage people to come up with more effective defense measures.
Return-Oriented Programming (ROP) has emerged as one of the most widely used techniques to exploit software vulnerabilities. Unfortunately, existing ROP protections suffer from a number of shortcomings: they require access to source code and compiler support, focus on specific types of gadgets, depend on accurate disassembly and construction of Control Flow Graphs, or use hardware-dependent (microarchitectural) characteristics. In this paper, we propose EigenROP, a novel system to detect ROP payloads based on unsupervised statistical learning of program characteristics. We study, for the first time, the feasibility and effectiveness of using microarchitecture-independent program characteristics – namely, memory locality, register traffic, and memory reuse distance – for detecting ROP. We propose a novel directional statistics based algorithm to identify deviations from the expected program characteristics during execution. EigenROP works transparently to the protected program, without requiring debug information, source code or disassembly. We implemented a dynamic instrumentation prototype of EigenROP using Intel Pin and measured it against in-the-wild ROP exploits and on payloads generated by the ROP compiler ROPC. Overall, EigenROP achieved significantly higher accuracy than prior anomaly-based solutions. It detected the execution of the ROP gadget chains with 81% accuracy, 80% true positive rate, only 0.8% false positive rate, and incurred comparable overhead to similar Pin-based solutions. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer
In 2007, Shacham published a seminal paper on Return-Oriented Programming (ROP), the first systematic formulation of code reuse. The paper has been highly influential, profoundly shaping the way we still think about code reuse today: an attacker analyzes the "geometry" of victim binary code to locate gadgets and chains these to craft an exploit. This model has spurred much research, with a rapid progression of increasingly sophisticated code reuse attacks and defenses over time. After ten years, the common perception is that state-of-the-art code reuse defenses are effective in significantly raising the bar and making attacks exceedingly hard. In this paper, we challenge this perception and show that an attacker going beyond "geometry" (static analysis) and considering the "dynamics" (dynamic analysis) of a victim program can easily find function call gadgets even in the presence of state-of-the-art code-reuse defenses. To support our claims, we present Newton, a run-time gadget-discovery framework based on constraint-driven dynamic taint analysis. Newton can model a broad range of defenses by mapping their properties into simple, stackable, reusable constraints, and automatically generate gadgets that comply with these constraints. Using Newton, we systematically map and compare state-of-the-art defenses, demonstrating that even simple interactions with popular server programs are adequate for finding gadgets for all state-of-the-art code-reuse defenses. We conclude with an nginx case study, which shows that a Newton-enabled attacker can craft attacks which comply with the restrictions of advanced defenses, such as CPI and context-sensitive CFI.
The kernel code injection is a common behavior of kernel-compromising attacks where the attackers aim to gain their goals by manipulating an OS kernel. Several security mechanisms have been proposed to mitigate such threats, but they all suffer from non-negligible performance overhead. This article introduces a hardware reference monitor, called Kargos, which can detect the kernel code injection attacks with nearly zero performance cost. Kargos monitors the behaviors of an OS kernel from outside the CPU through the standard bus interconnect and debug interface available with most major microprocessors. By watching the execution traces and memory access events in the monitored target system, Kargos uncovers attempts to execute malicious code with the kernel privilege. On top of this, we also applied the architectural supports for Kargos to the detection of ROP attacks. KS-Stack is the hardware component that builds and maintains the shadow stacks using the existing supports to detect this ROP attacks. According to our experiments, Kargos detected all the kernel code injection attacks that we tested, yet just increasing the computational loads on the target CPU by less than 1% on average. The performance overhead of the KS-Stack was also less than 1%.
Memory disclosure vulnerabilities enable an adversary to successfully mount arbitrary code execution attacks against applications via so-called just-in-time code reuse attacks, even when those applications are fortified with fine-grained address space layout randomization. This attack paradigm requires the adversary to first read the contents of randomized application code, then construct a code reuse payload using that knowledge. In this paper, we show that the recently proposed Execute-no-Read (XnR) technique fails to prevent just-in-time code reuse attacks. Next, we introduce the design and implementation of a novel memory permission primitive, dubbed No-Execute-After-Read (near), that foregoes the problems of XnR and provides strong security guarantees against just-in-time attacks in commodity binaries. Specifically, near allows all code to be disclosed, but prevents any disclosed code from subsequently being executed, thus thwarting just-in-time code reuse. At the same time, commodity binaries with mixed code and data regions still operate correctly, as legitimate data is still readable. To demonstrate the practicality and portability of our approach we implemented prototypes for both Linux and Android on the ARMv8 architecture, as well as a prototype that protects unmodified Microsoft Windows executables and dynamically linked libraries. In addition, our evaluation on the SPEC2006 benchmark demonstrates that our prototype has negligible runtime overhead, making it suitable for practical deployment.
A program subject to a Return-Oriented Programming (ROP) attack usually presents an execution trace with a high frequency of indirect branches. From this observation, several researchers have proposed to monitor the density of these instructions to detect ROP attacks. These techniques use universal thresholds: the density of indirect branches that characterizes an attack is the same for every application. This paper shows that universal thresholds are easy to circumvent. As an alternative, we introduce an inter-procedural semi-context-sensitive static code analysis that estimates the maximum density of indirect branches possible for a program. This analysis determines detection thresholds for each application; thus, making it more difficult for attackers to compromise programs via ROP. We have used an implementation of our technique in LLVM to find specific thresholds for the programs in SPEC CPU2006. By comparing these thresholds against actual execution traces of corresponding programs, we demonstrate the accuracy of our approach. Furthermore, our algorithm is practical: it finds an approximate solution to a theoretically undecidable problem, and handles programs with up to 700 thousand assembly instructions in 25 minutes.
Recently, code reuse attacks (CRAs) have emerged as a new class of ingenious security threatens. Attackers can utilize CRAs to hijack the control flow of programs to perform malicious actions without injecting any codes. Existing defenses against CRAs often incur high memory and performance overheads or require extending the existing processors' instruction set architectures (ISAs). To tackle these issues, we propose a hardware-based control flow integrity (CFI) that employs physical unclonable functions (PUF)-based linear encryption architecture (LEA) to protect against CRAs with negligible hardware extending and run time overheads. The proposed method can protect ret and indirect jmp instructions from return oriented programming (ROP) and jump oriented programming (JOP) without any additional software manipulations and extending ISAs. The pre-process will be conducted on codes once the executable binary is loaded into memory, and the real-time control flow verification based on LEA can be done while ret and jmp instructions are executed. Performance evaluations on benchmarks show that the proposed method only introduces 0.61% run-time overhead and 0.63% memory overhead on average.