Visible to the public Biblio

Filters: Keyword is return oriented programming  [Clear All Filters]
2019-10-14
Li, W., Ma, Y., Yang, Q., Li, M..  2018.  Hardware-Based Adversary-Controlled States Tracking. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1366–1370.

Return Oriented Programming is one of the most important software security challenges nowadays. It exploits memory vulnerabilities to control the state of the program and hijacks its control flow. Existing defenses usually focus on how to protect the control flow or face the challenge of how to maintain the taint markings for memory data. In this paper, we directly focus on the adversary-controlled states, simplify the classic dynamic taint analysis method to only track registers and propose Hardware-based Adversary-controlled States Tracking (HAST). HAST dynamically tracks registers that may be controlled by the adversary to detect ROP attack. It is transparent to user application and makes few modifications to existing hardware. Our evaluation demonstrates that HAST will introduce almost no performance overhead and can effectively detect ROP attacks without false positives on the tested common Linux applications.

Tymburibá, M., Sousa, H., Pereira, F..  2019.  Multilayer ROP Protection Via Microarchitectural Units Available in Commodity Hardware. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :315–327.

This paper presents a multilayer protection approach to guard programs against Return-Oriented Programming (ROP) attacks. Upper layers validate most of a program's control flow at a low computational cost; thus, not compromising runtime. Lower layers provide strong enforcement guarantees to handle more suspicious flows; thus, enhancing security. Our multilayer system combines techniques already described in the literature with verifications that we introduce in this paper. We argue that modern versions of x86 processors already provide the microarchitectural units necessary to implement our technique. We demonstrate the effectiveness of our multilayer protection on a extensive suite of benchmarks, which includes: SPEC CPU2006; the three most popular web browsers; 209 benchmarks distributed with LLVM and four well-known systems shown to be vulnerable to ROP exploits. Our experiments indicate that we can protect programs with almost no overhead in practice, allying the good performance of lightweight security techniques with the high dependability of heavyweight approaches.

Koo, H., Chen, Y., Lu, L., Kemerlis, V. P., Polychronakis, M..  2018.  Compiler-Assisted Code Randomization. 2018 IEEE Symposium on Security and Privacy (SP). :461–477.

Despite decades of research on software diversification, only address space layout randomization has seen widespread adoption. Code randomization, an effective defense against return-oriented programming exploits, has remained an academic exercise mainly due to i) the lack of a transparent and streamlined deployment model that does not disrupt existing software distribution norms, and ii) the inherent incompatibility of program variants with error reporting, whitelisting, patching, and other operations that rely on code uniformity. In this work we present compiler-assisted code randomization (CCR), a hybrid approach that relies on compiler-rewriter cooperation to enable fast and robust fine-grained code randomization on end-user systems, while maintaining compatibility with existing software distribution models. The main concept behind CCR is to augment binaries with a minimal set of transformation-assisting metadata, which i) facilitate rapid fine-grained code transformation at installation or load time, and ii) form the basis for reversing any applied code transformation when needed, to maintain compatibility with existing mechanisms that rely on referencing the original code. We have implemented a prototype of this approach by extending the LLVM compiler toolchain, and developing a simple binary rewriter that leverages the embedded metadata to generate randomized variants using basic block reordering. The results of our experimental evaluation demonstrate the feasibility and practicality of CCR, as on average it incurs a modest file size increase of 11.46% and a negligible runtime overhead of 0.28%, while it is compatible with link-time optimization and control flow integrity.

Rong, Z., Xie, P., Wang, J., Xu, S., Wang, Y..  2018.  Clean the Scratch Registers: A Way to Mitigate Return-Oriented Programming Attacks. 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP). :1–8.

With the implementation of W ⊕ X security model on computer system, Return-Oriented Programming(ROP) has become the primary exploitation technique for adversaries. Although many solutions that defend against ROP exploits have been proposed, they still suffer from various shortcomings. In this paper, we propose a new way to mitigate ROP attacks that are based on return instructions. We clean the scratch registers which are also the parameter registers based on the features of ROP malicious code and calling convention. A prototype is implemented on x64-based Linux platform based on Pin. Preliminary experimental results show that our method can efficiently mitigate conventional ROP attacks.

Li, W., Li, M., Ma, Y., Yang, Q..  2018.  PMU-extended Hardware ROP Attack Detection. 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :183–187.

Return Oriented Programming is one of the major challenges for software security nowadays. It can bypass Data Execution Prevention (DEP) mechanism by chaining short instruction sequences from existing code together to induce arbitrary code execution. Existing defenses are usually trade-offs between practicality, security, and performance. In this paper, we propose PMUe, a low-cost hardware ROP detection approach that detects ROP attack based on three inherent properties of ROP. It is transparent to user applications and can be regarded as a small extension to existing Performance Monitoring Unit in commodity processors. Our evaluation demonstrates that PMUe can effectively detect ROP attack with negligible performance overhead.

Guo, Y., Chen, L., Shi, G..  2018.  Function-Oriented Programming: A New Class of Code Reuse Attack in C Applications. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.

Control-hijacking attacks include code injection attacks and code reuse attacks. In recent years, with the emergence of the defense mechanism data-execution prevention(DEP), code reuse attacks have become mainstream, such as return-oriented programming(ROP), Jump-Oriented Programming(JOP), and Counterfeit Object-oriented Programming(COOP). And a series of defensive measures have been proposed, such as DEP, address space layout randomization (ASLR), coarse-grained Control-Flow Integrity(CFI) and fine-grained CFI. In this paper, we propose a new attack called function-oriented programming(FOP) to construct malicious program behavior. FOP takes advantage of the existing function of the C program to induce attack. We propose concrete algorithms for FOP gadgets and build a tool to identify FOP gadgets. FOP can successfully bypass coarse-grained CFI, and FOP also can bypass some existing fine-grained CFI technologies, such as shadow stack technology. We show a real-world attack for proftpd1.3.0 server in the Linux x64 environment. We believe that the FOP attack will encourage people to come up with more effective defense measures.

2018-12-10
Pewny, Jannik, Koppe, Philipp, Davi, Lucas, Holz, Thorsten.  2017.  Breaking and Fixing Destructive Code Read Defenses. Proceedings of the 33rd Annual Computer Security Applications Conference. :55–67.
Just-in-time return-oriented programming (JIT-ROP) is a powerful memory corruption attack that bypasses various forms of code randomization. Execute-only memory (XOM) can potentially prevent these attacks, but requires source code. In contrast, destructive code reads (DCR) provide a trade-off between security and legacy compatibility. The common belief is that DCR provides strong protection if combined with a high-entropy code randomization. The contribution of this paper is twofold: first, we demonstrate that DCR can be bypassed regardless of the underlying code randomization scheme. To this end, we show novel, generic attacks that infer the code layout for highly randomized program code. Second, we present the design and implementation of BGDX (Byte-Granular DCR and XOM), a novel mitigation technique that protects legacy binaries against code inference attacks. BGDX enforces memory permissions on a byte-granular level allowing us to combine DCR and XOM for legacy, off-the-shelf binaries. Our evaluation shows that BGDX is not only effective, but highly efficient, imposing only a geometric mean performance overhead of 3.95 % on SPEC.
Maas, Martin, Asanović, Krste, Kubiatowicz, John.  2017.  Return of the Runtimes: Rethinking the Language Runtime System for the Cloud 3.0 Era. Proceedings of the 16th Workshop on Hot Topics in Operating Systems. :138–143.
The public cloud is moving to a Platform-as-a-Service model where services such as data management, machine learning or image classification are provided by the cloud operator while applications are written in high-level languages and leverage these services. Managed languages such as Java, Python or Scala are widely used in this setting. However, while these languages can increase productivity, they are often associated with problems such as unpredictable garbage collection pauses or warm-up overheads. We argue that the reason for these problems is that current language runtime systems were not initially designed for the cloud setting. To address this, we propose seven tenets for designing future language runtime systems for cloud data centers. We then outline the design of a general substrate for building such runtime systems, based on these seven tenets.
Quach, Anh, Cole, Matthew, Prakash, Aravind.  2017.  Supplementing Modern Software Defenses with Stack-Pointer Sanity. Proceedings of the 33rd Annual Computer Security Applications Conference. :116–127.
The perpetual cat-and-mouse game between attackers and software defenders has highlighted the need for strong and robust security. With performance as a key concern, most modern defenses focus on control-flow integrity (CFI), a program property that requires runtime execution of a program to adhere to a statically determined control-flow graph (CFG). Despite its success in preventing traditional return-oriented programming (ROP), CFI is known to be ineffective against modern attacks that adhere to a statically recovered CFG (e.g., COOP). This paper introduces stack-pointer integrity (SPI) as a means to supplement CFI and other modern defense techniques. Due to its ability to influence indirect control targets, stack pointer is a key artifact in attacks. We define SPI as a property comprising of two key sub-properties - Stack Localization and Stack Conservation - and implement a LLVM-based compiler prototype codenamed SPIglass that enforces SPI. We demonstrate a low implementation overhead and incremental deployability, two of the most desirable features for practical deployment. Our performance experiments show that the overhead of our defense is low in practice. We opensource SPIglass for the benefit of the community.
Chen, Yue, Khandaker, Mustakimur, Wang, Zhi.  2017.  Pinpointing Vulnerabilities. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :334–345.
Memory-based vulnerabilities are a major source of attack vectors. They allow attackers to gain unauthorized access to computers and their data. Previous research has made significant progress in detecting attacks. However, developers still need to locate and fix these vulnerabilities, a mostly manual and time-consuming process. They face a number of challenges. Particularly, the manifestation of an attack does not always coincide with the exploited vulnerabilities, and many attacks are hard to reproduce in the lab environment, leaving developers with limited information to locate them. In this paper, we propose Ravel, an architectural approach to pinpoint vulnerabilities from attacks. Ravel consists of an online attack detector and an offline vulnerability locator linked by a record & replay mechanism. Specifically, Ravel records the execution of a production system and simultaneously monitors it for attacks. If an attack is detected, the execution is replayed to reveal the targeted vulnerabilities by analyzing the program's memory access patterns under attack. We have built a prototype of Ravel based on the open-source FreeBSD operating system. The evaluation results in security and performance demonstrate that Ravel can effectively pinpoint various types of memory vulnerabilities and has low performance overhead.
Burow, Nathan, Carr, Scott A., Nash, Joseph, Larsen, Per, Franz, Michael, Brunthaler, Stefan, Payer, Mathias.  2017.  Control-Flow Integrity: Precision, Security, and Performance. ACM Comput. Surv.. 50:16:1–16:33.
Memory corruption errors in C/C++ programs remain the most common source of security vulnerabilities in today’s systems. Control-flow hijacking attacks exploit memory corruption vulnerabilities to divert program execution away from the intended control flow. Researchers have spent more than a decade studying and refining defenses based on Control-Flow Integrity (CFI); this technique is now integrated into several production compilers. However, so far, no study has systematically compared the various proposed CFI mechanisms nor is there any protocol on how to compare such mechanisms. We compare a broad range of CFI mechanisms using a unified nomenclature based on (i) a qualitative discussion of the conceptual security guarantees, (ii) a quantitative security evaluation, and (iii) an empirical evaluation of their performance in the same test environment. For each mechanism, we evaluate (i) protected types of control-flow transfers and (ii) precision of the protection for forward and backward edges. For open-source, compiler-based implementations, we also evaluate (iii) generated equivalence classes and target sets and (iv) runtime performance.
Payer, Mathias.  2017.  Control-Flow Hijacking: Are We Making Progress? Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :4–4.
Memory corruption errors in C/C++ programs remain the most common source of security vulnerabilities in today's systems. Over the last 10+ years the security community developed several defenses [4]. Data Execution Prevention (DEP) protects against code injection – eradicating this attack vector. Yet, control-flow hijacking and code reuse remain challenging despite wide deployment of Address Space Layout Randomization (ASLR) and stack canaries. These defenses are probabilistic and rely on information hiding. The deployed defenses complicate attacks, yet control-flow hijack attacks (redirecting execution to a location that would not be reached in a benign execution) are still prevalent. Attacks reuse existing gadgets (short sequences of code), often leveraging information disclosures to learn the location of the desired gadgets. Strong defense mechanisms have not yet been widely deployed due to (i) the time it takes to roll out a security mechanism, (ii) incompatibility with specific features, and (iii) performance overhead. In the meantime, only a set of low-overhead but incomplete mitigations has been deployed in practice. Control-Flow Integrity (CFI) [1,2] and Code-Pointer Integrity (CPI) [3] are two promising upcoming defense mechanisms, protecting against control-flow hijacking. CFI guarantees that the runtime control flow follows the statically determined control-flow graph. An attacker may reuse any of the valid transitions at any control-flow transfer. We compare a broad range of CFI mechanisms using a unified nomenclature based on (i) a qualitative discussion of the conceptual security guarantees, (ii) a quantitative security evaluation, and (iii)\textbackslashtextasciitildean empirical evaluation of their performance in the same test environment. For each mechanism, we evaluate (i) protected types of control-flow transfers, (ii) the precision of the protection for forward and backward edges. For open-source compiler-based implementations, we additionally evaluate (iii) the generated equivalence classes and target sets, and (iv) the runtime performance. CPI on the other hand is a dynamic property that enforces selective memory safety through bounds checks for code pointers by separating code pointers from regular data.
2018-11-28
Elsabagh, Mohamed, Barbara, Daniel, Fleck, Dan, Stavrou, Angelos.  2017.  Detecting ROP with Statistical Learning of Program Characteristics. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :219–226.

Return-Oriented Programming (ROP) has emerged as one of the most widely used techniques to exploit software vulnerabilities. Unfortunately, existing ROP protections suffer from a number of shortcomings: they require access to source code and compiler support, focus on specific types of gadgets, depend on accurate disassembly and construction of Control Flow Graphs, or use hardware-dependent (microarchitectural) characteristics. In this paper, we propose EigenROP, a novel system to detect ROP payloads based on unsupervised statistical learning of program characteristics. We study, for the first time, the feasibility and effectiveness of using microarchitecture-independent program characteristics – namely, memory locality, register traffic, and memory reuse distance – for detecting ROP. We propose a novel directional statistics based algorithm to identify deviations from the expected program characteristics during execution. EigenROP works transparently to the protected program, without requiring debug information, source code or disassembly. We implemented a dynamic instrumentation prototype of EigenROP using Intel Pin and measured it against in-the-wild ROP exploits and on payloads generated by the ROP compiler ROPC. Overall, EigenROP achieved significantly higher accuracy than prior anomaly-based solutions. It detected the execution of the ROP gadget chains with 81% accuracy, 80% true positive rate, only 0.8% false positive rate, and incurred comparable overhead to similar Pin-based solutions. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

2018-09-28
Gu, Yufei, Zhao, Qingchuan, Zhang, Yinqian, Lin, Zhiqiang.  2017.  PT-CFI: Transparent Backward-Edge Control Flow Violation Detection Using Intel Processor Trace. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :173–184.
This paper presents PT-CFI, a new backward-edge control flow violation detection system based on a novel use of a recently introduced hardware feature called Intel Processor Trace (PT). Designed primarily for offline software debugging and performance analysis, PT offers the capability of tracing the entire control flow of a running program. In this paper, we explore the practicality of using PT for security applications, and propose to build a new control flow integrity (CFI) model that enforces a backward-edge CFI policy for native COTS binaries based on the traces from Intel PT. By exploring the intrinsic properties of PT with a system call based synchronization primitive and a deep inspection capability, we have addressed a number of technical challenges such as how to make sure the backward edge CFI policy is both sound and complete, how to make PT enforce our CFI policy, and how to balance the performance overhead. We have implemented PT-CFI and evaluated with a number of programs including SPEC2006 and HTTP daemons. Our experimental results show that PT-CFI can enforce a perfect backward-edge CFI with only small overhead for the protected program.
2018-01-23
van der Veen, Victor, Andriesse, Dennis, Stamatogiannakis, Manolis, Chen, Xi, Bos, Herbert, Giuffrdia, Cristiano.  2017.  The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten Years Later. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1675–1689.

In 2007, Shacham published a seminal paper on Return-Oriented Programming (ROP), the first systematic formulation of code reuse. The paper has been highly influential, profoundly shaping the way we still think about code reuse today: an attacker analyzes the "geometry" of victim binary code to locate gadgets and chains these to craft an exploit. This model has spurred much research, with a rapid progression of increasingly sophisticated code reuse attacks and defenses over time. After ten years, the common perception is that state-of-the-art code reuse defenses are effective in significantly raising the bar and making attacks exceedingly hard. In this paper, we challenge this perception and show that an attacker going beyond "geometry" (static analysis) and considering the "dynamics" (dynamic analysis) of a victim program can easily find function call gadgets even in the presence of state-of-the-art code-reuse defenses. To support our claims, we present Newton, a run-time gadget-discovery framework based on constraint-driven dynamic taint analysis. Newton can model a broad range of defenses by mapping their properties into simple, stackable, reusable constraints, and automatically generate gadgets that comply with these constraints. Using Newton, we systematically map and compare state-of-the-art defenses, demonstrating that even simple interactions with popular server programs are adequate for finding gadgets for all state-of-the-art code-reuse defenses. We conclude with an nginx case study, which shows that a Newton-enabled attacker can craft attacks which comply with the restrictions of advanced defenses, such as CPI and context-sensitive CFI.

Moon, Hyungon, Lee, Jinyong, Hwang, Dongil, Jung, Seonhwa, Seo, Jiwon, Paek, Yunheung.  2017.  Architectural Supports to Protect OS Kernels from Code-Injection Attacks and Their Applications. ACM Trans. Des. Autom. Electron. Syst.. 23:10:1–10:25.

The kernel code injection is a common behavior of kernel-compromising attacks where the attackers aim to gain their goals by manipulating an OS kernel. Several security mechanisms have been proposed to mitigate such threats, but they all suffer from non-negligible performance overhead. This article introduces a hardware reference monitor, called Kargos, which can detect the kernel code injection attacks with nearly zero performance cost. Kargos monitors the behaviors of an OS kernel from outside the CPU through the standard bus interconnect and debug interface available with most major microprocessors. By watching the execution traces and memory access events in the monitored target system, Kargos uncovers attempts to execute malicious code with the kernel privilege. On top of this, we also applied the architectural supports for Kargos to the detection of ROP attacks. KS-Stack is the hardware component that builds and maintains the shadow stacks using the existing supports to detect this ROP attacks. According to our experiments, Kargos detected all the kernel code injection attacks that we tested, yet just increasing the computational loads on the target CPU by less than 1% on average. The performance overhead of the KS-Stack was also less than 1%.

2017-05-30
Werner, Jan, Baltas, George, Dallara, Rob, Otterness, Nathan, Snow, Kevin Z., Monrose, Fabian, Polychronakis, Michalis.  2016.  No-Execute-After-Read: Preventing Code Disclosure in Commodity Software. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :35–46.

Memory disclosure vulnerabilities enable an adversary to successfully mount arbitrary code execution attacks against applications via so-called just-in-time code reuse attacks, even when those applications are fortified with fine-grained address space layout randomization. This attack paradigm requires the adversary to first read the contents of randomized application code, then construct a code reuse payload using that knowledge. In this paper, we show that the recently proposed Execute-no-Read (XnR) technique fails to prevent just-in-time code reuse attacks. Next, we introduce the design and implementation of a novel memory permission primitive, dubbed No-Execute-After-Read (near), that foregoes the problems of XnR and provides strong security guarantees against just-in-time attacks in commodity binaries. Specifically, near allows all code to be disclosed, but prevents any disclosed code from subsequently being executed, thus thwarting just-in-time code reuse. At the same time, commodity binaries with mixed code and data regions still operate correctly, as legitimate data is still readable. To demonstrate the practicality and portability of our approach we implemented prototypes for both Linux and Android on the ARMv8 architecture, as well as a prototype that protects unmodified Microsoft Windows executables and dynamically linked libraries. In addition, our evaluation on the SPEC2006 benchmark demonstrates that our prototype has negligible runtime overhead, making it suitable for practical deployment.

2017-05-17
Tymburibá, Mateus, Moreira, Rubens E. A., Quintão Pereira, Fernando Magno.  2016.  Inference of Peak Density of Indirect Branches to Detect ROP Attacks. Proceedings of the 2016 International Symposium on Code Generation and Optimization. :150–159.

A program subject to a Return-Oriented Programming (ROP) attack usually presents an execution trace with a high frequency of indirect branches. From this observation, several researchers have proposed to monitor the density of these instructions to detect ROP attacks. These techniques use universal thresholds: the density of indirect branches that characterizes an attack is the same for every application. This paper shows that universal thresholds are easy to circumvent. As an alternative, we introduce an inter-procedural semi-context-sensitive static code analysis that estimates the maximum density of indirect branches possible for a program. This analysis determines detection thresholds for each application; thus, making it more difficult for attackers to compromise programs via ROP. We have used an implementation of our technique in LLVM to find specific thresholds for the programs in SPEC CPU2006. By comparing these thresholds against actual execution traces of corresponding programs, we demonstrate the accuracy of our approach. Furthermore, our algorithm is practical: it finds an approximate solution to a theoretically undecidable problem, and handles programs with up to 700 thousand assembly instructions in 25 minutes.

2017-03-20
Qiu, Pengfei, Lyu, Yongqiang, Zhang, Jiliang, Wang, Xingwei, Zhai, Di, Wang, Dongsheng, Qu, Gang.  2016.  Physical Unclonable Functions-based Linear Encryption Against Code Reuse Attacks. Proceedings of the 53rd Annual Design Automation Conference. :75:1–75:6.

Recently, code reuse attacks (CRAs) have emerged as a new class of ingenious security threatens. Attackers can utilize CRAs to hijack the control flow of programs to perform malicious actions without injecting any codes. Existing defenses against CRAs often incur high memory and performance overheads or require extending the existing processors' instruction set architectures (ISAs). To tackle these issues, we propose a hardware-based control flow integrity (CFI) that employs physical unclonable functions (PUF)-based linear encryption architecture (LEA) to protect against CRAs with negligible hardware extending and run time overheads. The proposed method can protect ret and indirect jmp instructions from return oriented programming (ROP) and jump oriented programming (JOP) without any additional software manipulations and extending ISAs. The pre-process will be conducted on codes once the executable binary is loaded into memory, and the real-time control flow verification based on LEA can be done while ret and jmp instructions are executed. Performance evaluations on benchmarks show that the proposed method only introduces 0.61% run-time overhead and 0.63% memory overhead on average.