Biblio
Public key cryptography or asymmetric keys are widely used in the implementation of data security on information and communication systems. The RSA algorithm (Rivest, Shamir, and Adleman) is one of the most popular and widely used public key cryptography because of its less complexity. RSA has two main functions namely the process of encryption and decryption process. Digital Signature Algorithm (DSA) is a digital signature algorithm that serves as the standard of Digital Signature Standard (DSS). DSA is also included in the public key cryptography system. DSA has two main functions of creating digital signatures and checking the validity of digital signatures. In this paper, the authors compare the computational times of RSA and DSA with some bits and choose which bits are better used. Then combine both RSA and DSA algorithms to improve data security. From the simulation results, the authors chose RSA 1024 for the encryption process and added digital signatures using DSA 512, so the messages sent are not only encrypted but also have digital signatures for the data authentication process.
the terms Smart grid, IntelliGrid, and secure astute grid are being used today to describe technologies that automatically and expeditiously (separate far from others) faults, renovate potency, monitor demand, and maintain and recuperate (firm and steady nature/lasting nature/vigor) for more reliable generation, transmission, and distribution of electric potency. In general, the terms describe the utilization of microprocessor-predicated astute electronic contrivances (IEDs) communicating with one another to consummate tasks afore now done by humans or left undone. These IEDs watch/ notice/ celebrate/ comply with the state of the puissance system, make edified decisions, and then take action to preserve the (firm and steady nature/lasting nature/vigor) and performance of the grid. Technology use/military accommodation in the home will sanction end users to manage their consumption predicated on their own predilections. In order to manage their consumption or the injuctive authorization placed on the grid, people (who utilize a product or accommodation) need information and an (able to transmute and get better) power distribution system. The astute grid is an accumulation of information sources and the automatic control system that manages the distribution of puissance, understands the transmutations in demand, and reacts to it by managing demand replication. Different billing (prosperity plans/ways of reaching goals) for mutable time and type of avail, as well as conservation and use or sale of distributed utilizable things/valuable supplies, will become part of perspicacious solutions. The traditional electrical power grid is currently evolving into the perspicacious grid. Perspicacious grid integrates the traditional electrical power grid with information and communication technologies (ICT). Such integration empowers the electrical utilities providers and consumers, amends the efficiency and the availability of the puissance system while perpetually monitoring, - ontrolling and managing the authoritative ordinances of customers. A keenly intellective grid is an astronomically immense intricate network composed of millions of contrivances and entities connected with each other. Such a massive network comes with many security concerns and susceptibilities. In this paper, we survey the latest on keenly intellective grid security. We highlight the involution of the keenly intellective grid network and discuss the susceptibilities concrete to this sizably voluminous heterogeneous network. We discuss then the challenges that subsist in securing the keenly intellective grid network and how the current security solutions applied for IT networks are not adequate to secure astute grid networks. We conclude by over viewing the current and needed security solutions for the keenly intellective gird.
In a continually evolving cyber-threat landscape, the detection and prevention of cyber attacks has become a complex task. Technological developments have led organisations to digitise the majority of their operations. This practice, however, has its perils, since cybespace offers a new attack-surface. Institutions which are tasked to protect organisations from these threats utilise mainly network data and their incident response strategy remains oblivious to the needs of the organisation when it comes to protecting operational aspects. This paper presents a system able to combine threat intelligence data, attack-trend data and organisational data (along with other data sources available) in order to achieve automated network-defence actions. Our approach combines machine learning, visual analytics and information from business processes to guide through a decision-making process for a Security Operation Centre environment. We test our system on two synthetic scenarios and show that correlating network data with non-network data for automated network defences is possible and worth investigating further.
One important goal of black-box complexity theory is the development of complexity models allowing to derive meaningful lower bounds for whole classes of randomized search heuristics. Complementing classical runtime analysis, black-box models help us understand how algorithmic choices such as the population size, the variation operators, or the selection rules influence the optimization time. One example for such a result is the Ω(n log n) lower bound for unary unbiased algorithms on functions with a unique global optimum [Lehre/Witt, GECCO 2010], which tells us that higher arity operators or biased sampling strategies are needed when trying to beat this bound. In lack of analyzing techniques, almost no non-trivial bounds are known for other restricted models. Proving such bounds therefore remains to be one of the main challenges in black-box complexity theory. With this paper we contribute to our technical toolbox for lower bound computations by proposing a new type of information-theoretic argument. We regard the permutation- and bit-invariant version of LeadingOnes and prove that its (1+1) elitist black-box complexity is Ω(n2), a bound that is matched by (1+1)-type evolutionary algorithms. The (1+1) elitist complexity of LeadingOnes is thus considerably larger than its unrestricted one, which is known to be of order n log log n [Afshani et al., 2013].