Visible to the public Biblio

Filters: Keyword is application security  [Clear All Filters]
2023-05-12
Zhu, Lu, Wei, Yehua, Jiang, Haoran, Long, Jing.  2022.  CAN FD Message Authentication Enhances Parallel in-vehicle Applications Security. 2022 2nd International Conference on Intelligent Technology and Embedded Systems (ICITES). :155–160.
Controller Area Network with Flexible Data-rate(CAN FD) has the advantages of high bandwidth and data field length to meet the higher communication requirements of parallel in-vehicle applications. If the CAN FD lacking the authentication security mechanism is used, it is easy to make it suffer from masquerade attack. Therefore, a two-stage method based on message authentication is proposed to enhance the security of it. In the first stage, an anti-exhaustive message exchange and comparison algorithm is proposed. After exchanging the message comparison sequence, the lower bound of the vehicle application and redundant message space is obtained. In the second stage, an enhanced round accumulation algorithm is proposed to enhance security, which adds Message Authentication Codes(MACs) to the redundant message space in a way of fewer accumulation rounds. Experimental examples show that the proposed two-stage approach enables both small-scale and large-scale parallel in-vehicle applications security to be enhanced. Among them, in the Adaptive Cruise Control Application(ACCA), when the laxity interval is 1300μs, the total increased MACs is as high as 388Bit, and the accumulation rounds is as low as 40 rounds.
2023-05-11
Qbea'h, Mohammad, Alrabaee, Saed, Alshraideh, Mohammad, Sabri, Khair Eddin.  2022.  Diverse Approaches Have Been Presented To Mitigate SQL Injection Attack, But It Is Still Alive: A Review. 2022 International Conference on Computer and Applications (ICCA). :1–5.
A huge amount of stored and transferred data is expanding rapidly. Therefore, managing and securing the big volume of diverse applications should have a high priority. However, Structured Query Language Injection Attack (SQLIA) is one of the most common dangerous threats in the world. Therefore, a large number of approaches and models have been presented to mitigate, detect or prevent SQL injection attack but it is still alive. Most of old and current models are created based on static, dynamic, hybrid or machine learning techniques. However, SQL injection attack still represents the highest risk in the trend of web application security risks based on several recent studies in 2021. In this paper, we present a review of the latest research dealing with SQL injection attack and its types, and demonstrating several types of most recent and current techniques, models and approaches which are used in mitigating, detecting or preventing this type of dangerous attack. Then, we explain the weaknesses and highlight the critical points missing in these techniques. As a result, we still need more efforts to make a real, novel and comprehensive solution to be able to cover all kinds of malicious SQL commands. At the end, we provide significant guidelines to follow in order to mitigate such kind of attack, and we strongly believe that these tips will help developers, decision makers, researchers and even governments to innovate solutions in the future research to stop SQLIA.
2023-04-28
Suryotrisongko, Hatma, Ginardi, Hari, Ciptaningtyas, Henning Titi, Dehqan, Saeed, Musashi, Yasuo.  2022.  Topic Modeling for Cyber Threat Intelligence (CTI). 2022 Seventh International Conference on Informatics and Computing (ICIC). :1–7.
Topic modeling algorithms from the natural language processing (NLP) discipline have been used for various applications. For instance, topic modeling for the product recommendation systems in the e-commerce systems. In this paper, we briefly reviewed topic modeling applications and then described our proposed idea of utilizing topic modeling approaches for cyber threat intelligence (CTI) applications. We improved the previous work by implementing BERTopic and Top2Vec approaches, enabling users to select their preferred pre-trained text/sentence embedding model, and supporting various languages. We implemented our proposed idea as the new topic modeling module for the Open Web Application Security Project (OWASP) Maryam: Open-Source Intelligence (OSINT) framework. We also described our experiment results using a leaked hacker forum dataset (nulled.io) to attract more researchers and open-source communities to participate in the Maryam project of OWASP Foundation.
2023-03-31
Du, Jikui.  2022.  Analysis of a Joint Data Security Architecture Integrating Artificial Intelligence and Cloud Computing in the Era of Big Data. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :988–991.
This article analyzes the analysis of the joint data security architecture that integrates artificial intelligence and cloud computing in the era of big data. The article discusses and analyzes the integrated applications of big data, artificial intelligence and cloud computing. As an important part of big data security protection, joint data security Protecting the technical architecture is not only related to the security of joint data in the big data era, but also has an important impact on the overall development of the data era. Based on this, the thesis takes the big data security and joint data security protection technical architecture as the research content, and through a simple explanation of big data security, it then conducts detailed research on the big data security and joint data security protection technical architecture from five aspects and thinking.
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.  2022.  SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
2023-01-13
Li, Baofeng, Zhai, Feng, Fu, Yilun, Xu, Bin.  2022.  Analysis of Network Security Protection of Smart Energy Meter. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :718–722.
Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
2023-01-05
Baptista, Kevin, Bernardino, Eugénia, Bernardino, Anabela.  2022.  Swarm Intelligence applied to SQL Injection. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The Open Web Application Security Project (OWASP) (a non-profit foundation that works to improve computer security) considered, in 2021, injection as one of the biggest risks in web applications. SQL injection despite being a vulnerability easily avoided has a great insurgency in web applications, and its impact is quite nefarious. To identify and exploit vulnerabilities in a system, algorithms based on Swarm Intelligence (SI) can be used. This article proposes and describes a new approach that uses SI and attack vectors to identify Structured Query Language (SQL) Injection vulnerabilities. The results obtained show the efficiency of the proposed approach.
2022-08-26
Rangnau, Thorsten, Buijtenen, Remco v., Fransen, Frank, Turkmen, Fatih.  2020.  Continuous Security Testing: A Case Study on Integrating Dynamic Security Testing Tools in CI/CD Pipelines. 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). :145–154.
Continuous Integration (CI) and Continuous Delivery (CD) have become a well-known practice in DevOps to ensure fast delivery of new features. This is achieved by automatically testing and releasing new software versions, e.g. multiple times per day. However, classical security management techniques cannot keep up with this quick Software Development Life Cycle (SDLC). Nonetheless, guaranteeing high security quality of software systems has become increasingly important. The new trend of DevSecOps aims to integrate security techniques into existing DevOps practices. Especially, the automation of security testing is an important area of research in this trend. Although plenty of literature discusses security testing and CI/CD practices, only a few deal with both topics together. Additionally, most of the existing works cover only static code analysis and neglect dynamic testing methods. In this paper, we present an approach to integrate three automated dynamic testing techniques into a CI/CD pipeline and provide an empirical analysis of the introduced overhead. We then go on to identify unique research/technology challenges the DevSecOps communities will face and propose preliminary solutions to these challenges. Our findings will enable informed decisions when employing DevSecOps practices in agile enterprise applications engineering processes and enterprise security.
2022-08-12
Li, Ziqing, Feng, Guiling.  2020.  Inter-Language Static Analysis for Android Application Security. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :647–650.

The Android application market will conduct various security analysis on each application to predict its potential harm before put it online. Since almost all the static analysis tools can only detect malicious behaviors in the Java layer, more and more malwares try to avoid static analysis by taking the malicious codes to the Native layer. To provide a solution for the above situation, there's a new research aspect proposed in this paper and defined as Inter-language Static Analysis. As all the involved technologies are introduced, the current research results of them will be captured in this paper, such as static analysis in Java layer, binary analysis in Native layer, Java-Native penetration technology, etc.

2022-07-01
Hashim, Aya, Medani, Razan, Attia, Tahani Abdalla.  2021.  Defences Against web Application Attacks and Detecting Phishing Links Using Machine Learning. 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). :1–6.
In recent years web applications that are hacked every day estimated to be 30 000, and in most cases, web developers or website owners do not even have enough knowledge about what is happening on their sites. Web hackers can use many attacks to gain entry or compromise legitimate web applications, they can also deceive people by using phishing sites to collect their sensitive and private information. In response to this, the need is raised to take proper measures to understand the risks and be aware of the vulnerabilities that may affect the website and hence the normal business flow. In the scope of this study, mitigations against the most common web application attacks are set, and the web administrator is provided with ways to detect phishing links which is a social engineering attack, the study also demonstrates the generation of web application logs that simplifies the process of analyzing the actions of abnormal users to show when behavior is out of bounds, out of scope, or against the rules. The methods of mitigation are accomplished by secure coding techniques and the methods for phishing link detection are performed by various machine learning algorithms and deep learning techniques. The developed application has been tested and evaluated against various attack scenarios, the outcomes obtained from the test process showed that the website had successfully mitigated these dangerous web application attacks, and for the detection of phishing links part, a comparison is made between different algorithms to find the best one, and the outcome of the best model gave 98% accuracy.
2022-04-18
Disawal, Shekhar, Suman, Ugrasen.  2021.  An Analysis and Classification of Vulnerabilities in Web-Based Application Development. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :782–785.
Nowadays, web vulnerability is a critical issue in web applications. Web developers develop web applications, but sometimes they are not very well-versed with security concerns, thereby creating loopholes for the vulnerabilities. If a web application is developed without considering security, it is harmful for the client and the company. Different types of vulnerabilities encounter during the web application development process. Therefore, vulnerability identification is a crucial and critical task from a web application development perspective. It is vigorous to secure them from the earliest development life cycle process. In this paper, we have analyzed and classified vulnerabilities related to web application security during the development phases. Here, the concern is to identify a weakness, countermeasure, confidentiality impact, access complexity, and severity level, which affect the web application security.
Shi, Guowei, Hao, Huajie, Lei, Jianghui, Zhu, Yuechen.  2021.  Application Security System Design of Internet of Things Based on Blockchain Technology. 2021 International Conference on Computer, Internet of Things and Control Engineering (CITCE). :134–137.
In view of the current status of Internet of Things applications and related security problems, the architecture system of Internet of Things applications based on block chain is introduced. First, it introduces the concepts related to blockchain technology, introduces the architecture system of iot application based on blockchain, and discusses its overall architecture design, key technologies and functional structure design. The product embodies the whole process of the Internet of Things platform on the basis of blockchain, which builds an infrastructure based on the Internet of Things and solves the increasingly serious security problems in the Internet of Things through the technical characteristics of decentralization.
2022-02-25
Schreiber, Andreas, Sonnekalb, Tim, Kurnatowski, Lynn von.  2021.  Towards Visual Analytics Dashboards for Provenance-driven Static Application Security Testing. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :42–46.
The use of static code analysis tools for security audits can be time consuming, as the many existing tools focus on different aspects and therefore development teams often use several of these tools to keep code quality high and prevent security issues. Displaying the results of multiple tools, such as code smells and security warnings, in a unified interface can help developers get a better overview and prioritize upcoming work. We present visualizations and a dashboard that interactively display results from static code analysis for “interesting” commits during development. With this, we aim to provide an effective visual analytics tool for code security analysis results.
2022-02-07
Zhou, Xiaojun, Wang, Liming, Lu, Yan, Dong, Zhiwei, Zhang, Wuyang, Yuan, Yidong, Li, Qi.  2021.  Research on Impact Assessment of Attacks on Power Terminals. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1401–1404.
The power terminal network has the characteristics of a large number of nodes, various types, and complex network topology. After the power terminal network is attacked, the impact of power terminals in different business scenarios is also different. Traditional impact assessment methods based on network traffic or power system operation rules are difficult to achieve comprehensive attack impact analysis. In this paper, from the three levels of terminal security itself, terminal network security and terminal business application security, it constructs quantitative indicators for analyzing the impact of power terminals after being attacked, so as to determine the depth and breadth of the impact of the attack on the power terminal network, and provide the next defense measures with realistic basis.
2020-11-02
Aman, W., Khan, F..  2019.  Ontology-based Dynamic and Context-aware Security Assessment Automation for Critical Applications. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :644–647.

Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.

2020-09-28
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
2020-06-01
Ye, Yu, Guo, Jun, Xu, Xunjian, Li, Qinpu, Liu, Hong, Di, Yuelun.  2019.  High-risk Problem of Penetration Testing of Power Grid Rainstorm Disaster Artificial Intelligence Prediction System and Its Countermeasures. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). :2675–2680.
System penetration testing is an important measure of discovering information system security issues. This paper summarizes and analyzes the high-risk problems found in the penetration testing of the artificial storm prediction system for power grid storm disasters from four aspects: application security, middleware security, host security and network security. In particular, in order to overcome the blindness of PGRDAIPS current SQL injection penetration test, this paper proposes a SQL blind bug based on improved second-order fragmentation reorganization. By modeling the SQL injection attack behavior and comparing the SQL injection vulnerability test in PGRDAIPS, this method can effectively reduce the blindness of SQL injection penetration test and improve its accuracy. With the prevalence of ubiquitous power internet of things, the electric power information system security defense work has to be taken seriously. This paper can not only guide the design, development and maintenance of disaster prediction information systems, but also provide security for the Energy Internet disaster safety and power meteorological service technology support.
2020-04-10
Wang, Cheng, Liu, Xin, Zhou, Xiaokang, Zhou, Rui, Lv, Dong, lv, Qingquan, Wang, Mingsong, Zhou, Qingguo.  2019.  FalconEye: A High-Performance Distributed Security Scanning System. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :282—288.
Web applications, as a conventional platform for sensitive data and important transactions, are of great significance to human society. But with its open source framework, the existing security vulnerabilities can easily be exploited by malicious users, especially when web developers fail to follow the secure practices. Here we present a distributed scanning system, FalconEye, with great precision and high performance, it will help prevent potential threats to Web applications. Besides, our system is also capable of covering basically all the web vulnerabilities registered in the Common Vulnerabilities and Exposures (CVE). The FalconEye system is consists of three modules, an input source module, a scanner module and a support platform module. The input module is used to improve the coverage of target server, and other modules make the system capable of generic vulnerabilities scanning. We then experimentally demonstrate this system in some of the most common vulnerabilities test environment. The results proved that the FalconEye system can be a strong contender among the various detection systems in existence today.
2020-03-27
Jadidi, Mahya Soleimani, Zaborski, Mariusz, Kidney, Brian, Anderson, Jonathan.  2019.  CapExec: Towards Transparently-Sandboxed Services. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.
Network services are among the riskiest programs executed by production systems. Such services execute large quantities of complex code and process data from arbitrary — and untrusted — network sources, often with high levels of system privilege. It is desirable to confine system services to a least-privileged environment so that the potential damage from a malicious attacker can be limited, but existing mechanisms for sandboxing services require invasive and system-specific code changes and are insufficient to confine broad classes of network services. Rather than sandboxing one service at a time, we propose that the best place to add sandboxing to network services is in the service manager that starts those services. As a first step towards this vision, we propose CapExec, a process supervisor that can execute a single service within a sandbox based on a service declaration file in which, required resources whose limited access to are supported by Caper services, are specified. Using the Capsicum compartmentalization framework and its Casper service framework, CapExec provides robust application sandboxing without requiring any modifications to the application itself. We believe that this is the first step towards ubiquitous sandboxing of network services without the costs of virtualization.
2019-03-04
Laverdière, M., Merlo, E..  2018.  Detection of protection-impacting changes during software evolution. 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). :434–444.

Role-Based Access Control (RBAC) is often used in web applications to restrict operations and protect security sensitive information and resources. Web applications regularly undergo maintenance and evolution and their security may be affected by source code changes between releases. To prevent security regression and vulnerabilities, developers have to take re-validation actions before deploying new releases. This may become a significant undertaking, especially when quick and repeated releases are sought. We define protection-impacting changes as those changed statements during evolution that alter privilege protection of some code. We propose an automated method that identifies protection-impacting changes within all changed statements between two versions. The proposed approach compares statically computed security protection models and repository information corresponding to different releases of a system to identify protection-impacting changes. Results of experiments present the occurrence of protection-impacting changes over 210 release pairs of WordPress, a PHP content management web application. First, we show that only 41% of the release pairs present protection-impacting changes. Second, for these affected release pairs, protection-impacting changes can be identified and represent a median of 47.00 lines of code, that is 27.41% of the total changed lines of code. Over all investigated releases in WordPress, protection-impacting changes amounted to 10.89% of changed lines of code. Conversely, an average of about 89% of changed source code have no impact on RBAC security and thus need no re-validation nor investigation. The proposed method reduces the amount of candidate causes of protection changes that developers need to investigate. This information could help developers re-validate application security, identify causes of negative security changes, and perform repairs in a more effective way.

2019-02-14
Sun, A., Gao, G., Ji, T., Tu, X..  2018.  One Quantifiable Security Evaluation Model for Cloud Computing Platform. 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD). :197-201.

Whatever one public cloud, private cloud or a mixed cloud, the users lack of effective security quantifiable evaluation methods to grasp the security situation of its own information infrastructure on the whole. This paper provides a quantifiable security evaluation system for different clouds that can be accessed by consistent API. The evaluation system includes security scanning engine, security recovery engine, security quantifiable evaluation model, visual display module and etc. The security evaluation model composes of a set of evaluation elements corresponding different fields, such as computing, storage, network, maintenance, application security and etc. Each element is assigned a three tuple on vulnerabilities, score and repair method. The system adopts ``One vote vetoed'' mechanism for one field to count its score and adds up the summary as the total score, and to create one security view. We implement the quantifiable evaluation for different cloud users based on our G-Cloud platform. It shows the dynamic security scanning score for one or multiple clouds with visual graphs and guided users to modify configuration, improve operation and repair vulnerabilities, so as to improve the security of their cloud resources.

2019-01-21
Leal, A. G., Teixeira, Í C..  2018.  Development of a suite of IPv6 vulnerability scanning tests using the TTCN-3 language. 2018 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.

With the transition from IPv4 IPv6 protocol to improve network communications, there are concerns about devices and applications' security that must be dealt at the beginning of implementation or during its lifecycle. Automate the vulnerability assessment process reduces management overhead, enabling better management of risks and control of the vulnerabilities. Consequently, it reduces the effort needed for each test and it allows the increase of the frequency of application, improving time management to perform all the other complicated tasks necessary to support a secure network. There are several researchers involved in tests of vulnerability in IPv6 networks, exploiting addressing mechanisms, extension headers, fragmentation, tunnelling or dual-stack networks (using both IPv4 and IPv6 at the same time). Most existing tools use the programming languages C, Java, and Python instead of a language designed specifically to create a suite of tests, which reduces maintainability and extensibility of the tests. This paper presents a solution for IPv6 vulnerabilities scan tests, based on attack simulations, combining passive analysis (observing the manifestation of behaviours of the system under test) and an active one (stimulating the system to become symptomatic). Also, it describes a prototype that simulates and detects denial-of-service attacks on the ICMPv6 Protocol from IPv6. Also, a detailed report is created with the identified vulnerability and the possible existing solutions to mitigate such a gap, thus assisting the process of vulnerability management.

2018-08-23
Haq, M. S., Anwar, Z., Ahsan, A., Afzal, H..  2017.  Design pattern for secure object oriented information systems development. 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :456–460.
There are many object oriented design patterns and frameworks; to make the Information System robust, scalable and extensible. The objected oriented patterns are classified in the category of creational, structural, behavioral, security, concurrency, and user interface, relational, social and distributed. All the above classified design pattern doesn't work to provide a pathway and standards to make the Information system, to fulfill the requirement of confidentiality, Integrity and availability. This research work will explore the gap and suggest possible object oriented design pattern focusing the information security perspectives of the information system. At application level; this object oriented design pattern/framework shall try to ensure the Confidentiality, Integrity and Availability of the information systems intuitively. The main objective of this research work is to create a theoretical background of object oriented framework and design pattern which ensure confidentiality, integrity and availability of the system developed through the object oriented paradigm.
2018-05-30
Duan, Ruian, Bijlani, Ashish, Xu, Meng, Kim, Taesoo, Lee, Wenke.  2017.  Identifying Open-Source License Violation and 1-Day Security Risk at Large Scale. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2169–2185.

With millions of apps available to users, the mobile app market is rapidly becoming very crowded. Given the intense competition, the time to market is a critical factor for the success and profitability of an app. In order to shorten the development cycle, developers often focus their efforts on the unique features and workflows of their apps and rely on third-party Open Source Software (OSS) for the common features. Unfortunately, despite their benefits, careless use of OSS can introduce significant legal and security risks, which if ignored can not only jeopardize security and privacy of end users, but can also cause app developers high financial loss. However, tracking OSS components, their versions, and interdependencies can be very tedious and error-prone, particularly if an OSS is imported with little to no knowledge of its provenance. We therefore propose OSSPolice, a scalable and fully-automated tool for mobile app developers to quickly analyze their apps and identify free software license violations as well as usage of known vulnerable versions of OSS. OSSPolice introduces a novel hierarchical indexing scheme to achieve both high scalability and accuracy, and is capable of efficiently comparing similarities of app binaries against a database of hundreds of thousands of OSS sources (billions of lines of code). We populated OSSPolice with 60K C/C++ and 77K Java OSS sources and analyzed 1.6M free Google Play Store apps. Our results show that 1) over 40K apps potentially violate GPL/AGPL licensing terms, and 2) over 100K of apps use known vulnerable versions of OSS. Further analysis shows that developers violate GPL/AGPL licensing terms due to lack of alternatives, and use vulnerable versions of OSS despite efforts from companies like Google to improve app security. OSSPolice is available on GitHub.

2017-09-19
Tromer, Eran, Schuster, Roei.  2016.  DroidDisintegrator: Intra-Application Information Flow Control in Android Apps. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :401–412.

In mobile platforms and their app markets, controlling app permissions and preventing abuse of private information are crucial challenges. Information Flow Control (IFC) is a powerful approach for formalizing and answering user concerns such as: "Does this app send my geolocation to the Internet?" Yet despite intensive research efforts, IFC has not been widely adopted in mainstream programming practice. Abstract We observe that the typical structure of Android apps offers an opportunity for a novel and effective application of IFC. In Android, an app consists of a collection of a few dozen "components", each in charge of some high-level functionality. Most components do not require access to most resources. These components are a natural and effective granularity at which to apply IFC (as opposed to the typical process-level or language-level granularity). By assigning different permission labels to each component, and limiting information flow between components, it is possible to express and enforce IFC constraints. Yet nuances of the Android platform, such as its multitude of discretionary (and somewhat arcane) communication channels, raise challenges in defining and enforcing component boundaries. Abstract We build a system, DroidDisintegrator, which demonstrates the viability of component-level IFC for expressing and controlling app behavior. DroidDisintegrator uses dynamic analysis to generate IFC policies for Android apps, repackages apps to embed these policies, and enforces the policies at runtime. We evaluate DroidDisintegrator on dozens of apps.