Biblio
A new approach of a formalism of hybrid automatons has been proposed for the analysis of conflict processes between the information system and the information's security malefactor. An example of probability-based assessment on malefactor's victory has been given and the possibility to abstract from a specific type of probability density function for the residence time of parties to the conflict in their possible states. A model of the distribution of destructive informational influences in the information system to connect the process of spread of destructive information processes and the process of changing subjects' states of the information system has been proposed. An example of the destructive information processes spread analysis has been given.
The purpose of this research is to propose a new mathematical model, designed to evaluate the security of cryptosystems. This model is a mixture of ideas from two basic mathematical theories, information theory and game theory. The role of information theory is assigning the model with security criteria of the cryptosystems. The role of game theory was to produce the value of the game which is representing the outcome of these criteria, which finally refers to cryptosystem's security. The proposed model support an accurate and mathematical way to evaluate the security of cryptosystems by unifying the criteria resulted from information theory and produce a unique reasonable value.
Permissioned Blockchain (PBC) has become a prevalent data structure to ensure that the records are immutable and secure. However, PBC still has significant challenges before it can be realized in different applications. One of such challenges is the overhead of the communication which is required to execute the Byzantine Agreement (BA) protocol that is needed for consensus building. As such, it may not be feasible to implement PBC for resource constrained environments such as Internet-of-Things (IoT). In this paper, we assess the communication overhead of running BA in an IoT environment that consists of wireless nodes (e.g., Raspberry PIs) with meshing capabilities. As the the packet loss ratio is significant and makes BA unfeasible to scale, we propose a network coding based approach that will reduce the packet overhead and minimize the consensus completion time of the BA. Specifically, various network coding approaches are designed as a replacement to TCP protocol which relies on unicasting and acknowledgements. The evaluation on a network of Raspberry PIs demonstrates that our approach can significantly improve scalability making BA feasible for medium size IoT networks.
As security incidents might have disastrous consequences on an enterprise's information technology (IT), organizations need to secure their IT against threats. Threat intelligence (TI) promises to provide actionable information about current threats for information security management systems (ISMS). Common information range from malware characteristics to observed perpetrator origins that allow customizing security controls. The aim of this article is to assess the impact of utilizing public available threat feeds within the corporate process on an organization's security information level. We developed a framework to integrate TI for large corporations and evaluated said framework in cooperation with a global acting manufacturer and retailer. During the development of the TI framework, a specific provider of TI was analyzed and chosen for integration within the process of vulnerability management. The evaluation of this exemplary integration was assessed by members of the information security department at the cooperating enterprise. During our evaluation it was emphasized that a prioritization of management activities based on whether threats that have been observed in the wild are targeting them or similar companies. Furthermore, indicators of compromise (IoC) provided by the chosen TI source, can be automatically integrated utilizing a provided software development kit. Theoretical relevance is based on the contribution towards the verification of proposed benefits of TI integration, such as increasing the resilience of an enterprise network, within a real-world environment. Overall, practitioners suggest that TI integration should result in enhanced management of security budgets and more resilient enterprise networks.
Awareness and knowledge management are key components to achieve a high level of information security in organizations. However, practical evidence suggests that there are significant discrepancies between the typical elements of security awareness campaigns, the decisions made and goals set by top-level management, and routine operations carried out by systems administration personnel. This paper presents Vis4Sec, a process framework for the generation and distribution of stakeholder-specific visualizations of security metrics, which assists in closing the gap between theoretical and practical information security by respecting the different points of view of the involved security report audiences. An implementation for patch management on Linux servers, deployed at a large data center, is used as a running example.
Fuzzy extractors (Dodiset al., Eurocrypt 2004) turn a noisy secret into a stable, uniformly distributed key. Reusable fuzzy extractors remain secure when multiple keys are produced from a single noisy secret (Boyen, CCS 2004). Boyen showed information-theoretically secure reusable fuzzy extractors are subject to strong limitations. Simoens et al. (IEEE S&P, 2009) then showed deployed constructions suffer severe security breaks when reused. Canetti et al. (Eurocrypt 2016) used computational security to sidestep this problem, building a computationally secure reusable fuzzy extractor that corrects a sublinear fraction of errors. We introduce a generic approach to constructing reusable fuzzy extractors. We define a new primitive called a reusable pseudoentropic isometry that projects an input metric space to an output metric space. This projection preserves distance and entropy even if the same input is mapped to multiple output metric spaces. A reusable pseudoentropy isometry yields a reusable fuzzy extractor by 1) randomizing the noisy secret using the isometry and 2) applying a traditional fuzzy extractor to derive a secret key. We propose reusable pseudoentropic isometries for the set difference and Hamming metrics. The set difference construction is built from composable digital lockers (Canetti and Dakdouk, Eurocrypt 2008). For the Hamming metric, we show that the second construction of Canetti et al.(Eurocrypt 2016) can be seen as an instantiation of our framework. In both cases, the pseudoentropic isometry's reusability requires noisy secrets distributions to have entropy in each symbol of the alphabet. Our constructions yield the first reusable fuzzy extractors that correct a constant fraction of errors. We also implement our set difference solution and describe two use cases.
Security is a key concern in Internet of Things (IoT) designs. In a heterogeneous and complex environment, service providers and service requesters must trust each other. On-off attack is a sophisticated trust threat in which a malicious device can perform good and bad services randomly to avoid being rated as a low trust node. Some countermeasures demands prior level of trust knowing and time to classify a node behavior. In this paper, we introduce a Smart Middleware that automatically assesses the IoT resources trust, evaluating service providers attributes to protect against On-off attacks.
Smart industrial control systems (e.g., smart grid, oil and gas systems, transportation systems) are connected to the internet, and have the capability to collect and transmit data; as such, they are part of the IoT. The data collected can be used to improve services; however, there are serious privacy risks. This concern is usually addressed by means of privacy policies, but it is often difficult to understand the scope and consequences of such policies. Better tools to visualise and analyse data collection policies are needed. Graph-based modelling tools have been used to analyse complex systems in other domains. In this paper, we apply this technique to IoT data-collection policy analysis and visualisation. We describe graphical representations of category-based data collection policies and show that a graph-based policy language is a powerful tool not only to specify and visualise the policy, but also to analyse policy properties. We illustrate the approach with a simple example in the context of a chemical plant with a truck monitoring system. We also consider policy administration: we propose a classification of queries to help administrators analyse policies, and we show how the queries can be answered using our technique.
Inference based techniques are one of the major approaches to analyze DNS data and detect malicious domains. The key idea of inference techniques is to first define associations between domains based on features extracted from DNS data. Then, an inference algorithm is deployed to infer potential malicious domains based on their direct/indirect associations with known malicious ones. The way associations are defined is key to the effectiveness of an inference technique. It is desirable to be both accurate (i.e., avoid falsely associating domains with no meaningful connections) and with good coverage (i.e., identify all associations between domains with meaningful connections). Due to the limited scope of information provided by DNS data, it becomes a challenge to design an association scheme that achieves both high accuracy and good coverage. In this paper, we propose a new approach to identify domains controlled by the same entity. Our key idea is an in-depth analysis of active DNS data to accurately separate public IPs from dedicated ones, which enables us to build high-quality associations between domains. Our scheme avoids the pitfall of naive approaches that rely on weak "co-IP" relationship of domains (i.e., two domains are resolved to the same IP) that results in low detection accuracy, and, meanwhile, identifies many meaningful connections between domains that are discarded by existing state-of-the-art approaches. Our experimental results show that the proposed approach not only significantly improves the domain coverage compared to existing approaches but also achieves better detection accuracy. Existing path-based inference algorithms are specifically designed for DNS data analysis. They are effective but computationally expensive. To further demonstrate the strength of our domain association scheme as well as improve the inference efficiency, we construct a new domain-IP graph that can work well with the generic belief propagation algorithm. Through comprehensive experiments, we show that this approach offers significant efficiency and scalability improvement with only a minor impact to detection accuracy, which suggests that such a combination could offer a good tradeoff for malicious domain detection in practice.
Affective1 engineering is a methodology of designing products by collecting customer affective needs and translating them into product designs. It usually begins with questionnaire surveys to collect customer affective demands and responses. However, this process is expensive, which can only be conducted periodically in a small scale. With the rapid development of e-commerce, a larger number of customer product reviews are available on the Internet. Many studies have been done using opinion mining and sentiment analysis. However, the existing studies focus on the polarity classification from a single perspective (such as positive and negative). The classification of multiple affective attributes receives less attention. In this paper, 3-class classifications of four different affective attributes (i.e. Soft-Hard, Appealing-Unappealing, Handy-Bulky, and Reliable-Shoddy) are performed by using two classical machine learning algorithms (i.e. Softmax regression and Support Vector Machine) and two deep learning methods (i.e. Restricted Boltzmann machines and Deep Belief Network) on an Amazon dataset. The results show that the accuracy of deep learning methods is above 90%, while the accuracy of classical machine learning methods is about 64%. This indicates that deep learning methods are significantly better than classical machine learning methods.
3D modeling usually refers to be the use of 3D software to build production through the virtual 3D space model with 3D data. At present, most 3D modeling software such as 3dmax, FLAC3D and Midas all need adjust models to get a satisfactory model or by coding a precise modeling. There are many matters such as complicated steps, strong profession, the high modeling cost. Aiming at this problem, the paper presents a new 3D modeling methods which is based on Deep Belief Networks (DBN) and Interactive Evolutionary Algorithm (IEA). Following this method, firstly, extract characteristic vectors from vertex, normal, surfaces of the imported model samples. Secondly, use the evolution strategy, to extract feature vector for stochastic evolution by artificial grading control the direction of evolution, and in the process to extract the characteristics of user preferences. Then, use evolution function matrix to establish the fitness approximation evaluation model, and simulate subjective evaluation. Lastly, the user can control the whole machine simulation evaluation process at any time, and get a satisfactory model. The experimental results show that the method in this paper is feasible.
In recent years, new and devastating cyber attacks amplify the need for robust cybersecurity practices. Preventing novel cyber attacks requires the invention of Intrusion Detection Systems (IDSs), which can identify previously unseen attacks. Many researchers have attempted to produce anomaly - based IDSs, however they are not yet able to detect malicious network traffic consistently enough to warrant implementation in real networks. Obviously, it remains a challenge for the security community to produce IDSs that are suitable for implementation in the real world. In this paper, we propose a new approach using a Deep Belief Network with a combination of supervised and unsupervised machine learning methods for port scanning attacks detection - the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. Our proposed approach will be tested with network security datasets and compared with previously existing methods.
The monitoring circuit is widely applied in radiation environment and it is of significance to study the circuit reliability with the radiation effects. In this paper, an intelligent analysis method based on Deep Belief Network (DBN) and Support Vector Method is proposed according to the radiation experiments analysis of the monitoring circuit. The Total Ionizing Dose (TID) of the monitoring circuit is used to identify the circuit degradation trend. Firstly, the output waveforms of the monitoring circuit are obtained by radiating with the different TID. Subsequently, the Deep Belief Network Model is trained to extract the features of the circuit signal. Finally, the Support Vector Machine (SVM) and Support Vector Regression (SVR) are applied to classify and predict the remaining useful life (RUL) of the monitoring circuit. According to the experimental results, the performance of DBN-SVM exceeds DBN method for feature extraction and classification, and SVR is effective for predicting the degradation.
Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.
The recently developed deep belief network (DBN) has been shown to be an effective methodology for solving time series forecasting problems. However, the performance of DBN is seriously depended on the reasonable setting of hyperparameters. At present, random search, grid search and Bayesian optimization are the most common methods of hyperparameters optimization. As an alternative, a state-of-the-art derivative-free optimizer-negative correlation search (NCS) is adopted in this paper to decide the sizes of DBN and learning rates during the training processes. A comparative analysis is performed between the proposed method and other popular techniques in the time series forecasting experiment based on two types of time series datasets. Experiment results statistically affirm the efficiency of the proposed model to obtain better prediction results compared with conventional neural network models.
Accurate model is very important for the control of nonlinear system. The traditional identification method based on shallow BP network is easy to fall into local optimal solution. In this paper, a modeling method for nonlinear system based on improved Deep Belief Network (DBN) is proposed. Continuous Restricted Boltzmann Machine (CRBM) is used as the first layer of the DBN, so that the network can more effectively deal with the actual data collected from the real systems. Then, the unsupervised training and supervised tuning were combine to improve the accuracy of identification. The simulation results show that the proposed method has a higher identification accuracy. Finally, this improved algorithm is applied to identification of diameter model of silicon single crystal and the simulation results prove its excellent ability of parameters identification.
Deep neural networks (DNNs) are effective machine learning models to solve a large class of recognition problems, including the classification of nonlinearly separable patterns. The applications of DNNs are, however, limited by the large size and high energy consumption of the networks. Recently, stochastic computation (SC) has been considered to implement DNNs to reduce the hardware cost. However, it requires a large number of random number generators (RNGs) that lower the energy efficiency of the network. To overcome these limitations, we propose the design of an energy-efficient deep belief network (DBN) based on stochastic computation. An approximate SC activation unit (A-SCAU) is designed to implement different types of activation functions in the neurons. The A-SCAU is immune to signal correlations, so the RNGs can be shared among all neurons in the same layer with no accuracy loss. The area and energy of the proposed design are 5.27% and 3.31% (or 26.55% and 29.89%) of a 32-bit floating-point (or an 8-bit fixed-point) implementation. It is shown that the proposed SC-DBN design achieves a higher classification accuracy compared to the fixed-point implementation. The accuracy is only lower by 0.12% than the floating-point design at a similar computation speed, but with a significantly lower energy consumption.
In this paper, we discuss challenges when we try to automatically classify privacy policies using machine learning with words as the features. Since it is difficult for general public to understand privacy policies, it is necessary to support them to do that. To this end, the authors believe that machine learning is one of the promising ways because users can grasp the meaning of policies through outputs by a machine learning algorithm. Our final goal is to develop a system which automatically translates privacy policies into privacy labels [1]. Toward this goal, we classify sentences in privacy policies with category labels, using popular machine learning algorithms, such as a naive Bayes classifier.We choose these algorithms because we could use trained classifiers to evaluate keywords appropriate for privacy labels. Therefore, we adopt words as the features of those algorithms. Experimental results show about 85% accuracy. We think that much higher accuracy is necessary to achieve our final goal. By changing learning settings, we identified one reason of low accuracies such that privacy policies include many sentences which are not direct description of information about categories. It seems that such sentences are redundant but maybe they are essential in case of legal documents in order to prevent misinterpreting. Thus, it is important for machine learning algorithms to handle these redundant sentences appropriately.
We report on our implementation of a new Gaussian sampling algorithm for lattice trapdoors. Lattice trapdoors are used in a wide array of lattice-based cryptographic schemes including digital signatures, attributed-based encryption, program obfuscation and others. Our implementation provides Gaussian sampling for trapdoor lattices with prime moduli, and supports both single- and multi-threaded execution. We experimentally evaluate our implementation through its use in the GPV hash-and-sign digital signature scheme as a benchmark. We compare our design and implementation with prior work reported in the literature. The evaluation shows that our implementation 1) has smaller space requirements and faster runtime, 2) does not require multi-precision floating-point arithmetic, and 3) can be used for a broader range of cryptographic primitives than previous implementations.