Visible to the public Biblio

Filters: Keyword is additively homomorphic encryption  [Clear All Filters]
2020-08-07
Moriai, Shiho.  2019.  Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH). :198—198.

We aim at creating a society where we can resolve various social challenges by incorporating the innovations of the fourth industrial revolution (e.g. IoT, big data, AI, robot, and the sharing economy) into every industry and social life. By doing so the society of the future will be one in which new values and services are created continuously, making people's lives more conformable and sustainable. This is Society 5.0, a super-smart society. Security and privacy are key issues to be addressed to realize Society 5.0. Privacy-preserving data analytics will play an important role. In this talk we show our recent works on privacy-preserving data analytics such as privacy-preserving logistic regression and privacy-preserving deep learning. Finally, we show our ongoing research project under JST CREST “AI”. In this project we are developing privacy-preserving financial data analytics systems that can detect fraud with high security and accuracy. To validate the systems, we will perform demonstration tests with several financial institutions and solve the problems necessary for their implementation in the real world.

2020-06-22
Long, Yihong, Cheng, Minyang.  2019.  Secret Sharing Based SM2 Digital Signature Generation using Homomorphic Encryption. 2019 15th International Conference on Computational Intelligence and Security (CIS). :252–256.
SM2 is an elliptic curve public key cryptography algorithm released by the State Cryptography Administration of China. It includes digital signature, data encryption and key exchange schemes. To meet specific application requirements, such as to protect the user's private key in software only implementation, and to facilitate secure cloud cryptography computing, secret sharing based SM2 signature generation schemes have been proposed in the literature. In this paper a new such kind of scheme based upon additively homomorphic encryption is proposed. The proposed scheme overcomes the drawback that the existing schemes have and is more secure. It is useful in various application scenarios.
2017-03-29
Aono, Yoshinori, Hayashi, Takuya, Trieu Phong, Le, Wang, Lihua.  2016.  Scalable and Secure Logistic Regression via Homomorphic Encryption. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :142–144.

Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive data such as private or medical information, cares are necessary. In this paper, we propose a secure system for protecting the training data in logistic regression via homomorphic encryption. Perhaps surprisingly, despite the non-polynomial tasks of training in logistic regression, we show that only additively homomorphic encryption is needed to build our system. Our system is secure and scalable with the dataset size.