Visible to the public Biblio

Filters: Keyword is big data security metrics  [Clear All Filters]
2020-08-28
Hasanin, Tawfiq, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2019.  A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :83—88.

Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.

2020-04-03
Calvert, Chad L., Khoshgoftaar, Taghi M..  2019.  Threshold Based Optimization of Performance Metrics with Severely Imbalanced Big Security Data. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). :1328—1334.

Proper evaluation of classifier predictive models requires the selection of appropriate metrics to gauge the effectiveness of a model's performance. The Area Under the Receiver Operating Characteristic Curve (AUC) has become the de facto standard metric for evaluating this classifier performance. However, recent studies have suggested that AUC is not necessarily the best metric for all types of datasets, especially those in which there exists a high or severe level of class imbalance. There is a need to assess which specific metrics are most beneficial to evaluate the performance of highly imbalanced big data. In this work, we evaluate the performance of eight machine learning techniques on a severely imbalanced big dataset pertaining to the cyber security domain. We analyze the behavior of six different metrics to determine which provides the best representation of a model's predictive performance. We also evaluate the impact that adjusting the classification threshold has on our metrics. Our results find that the C4.5N decision tree is the optimal learner when evaluating all presented metrics for severely imbalanced Slow HTTP DoS attack data. Based on our results, we propose that the use of AUC alone as a primary metric for evaluating highly imbalanced big data may be ineffective, and the evaluation of metrics such as F-measure and Geometric mean can offer substantial insight into the true performance of a given model.

2020-03-09
Chhillar, Dheeraj, Sharma, Kalpana.  2019.  ACT Testbot and 4S Quality Metrics in XAAS Framework. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :503–509.

The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.

2020-02-17
Li, Zhifeng, Li, Yintao, Lin, Peng.  2019.  The Security Evaluation of Big Data Research for Smart Grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1055–1059.

The technological development of the energy sector also produced complex data. In this study, the relationship between smart grid and big data approaches have been investigated. After analyzing which areas of the smart grid system use big data technologies and technologies, big data technologies for detecting smart grid attacks have received attention. Big data analytics can produce efficient solutions and it is especially important to choose which algorithms and metrics to use. For this reason, an application prototype has been proposed that uses a big data method to detect attacks on the smart grid. The algorithm with high accuracy was determined to be 92% for random forests and 87% for decision trees.

2018-02-06
Marciani, G., Porretta, M., Nardelli, M., Italiano, G. F..  2017.  A Data Streaming Approach to Link Mining in Criminal Networks. 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). :138–143.

The ability to discover patterns of interest in criminal networks can support and ease the investigation tasks by security and law enforcement agencies. By considering criminal networks as a special case of social networks, we can properly reuse most of the state-of-the-art techniques to discover patterns of interests, i.e., hidden and potential links. Nevertheless, in time-sensible scenarios, like the one involving criminal actions, the ability to discover patterns in a (near) real-time manner can be of primary importance.In this paper, we investigate the identification of patterns for link detection and prediction on an evolving criminal network. To extract valuable information as soon as data is generated, we exploit a stream processing approach. To this end, we also propose three new similarity social network metrics, specifically tailored for criminal link detection and prediction. Then, we develop a flexible data stream processing application relying on the Apache Flink framework; this solution allows us to deploy and evaluate the newly proposed metrics as well as the ones existing in literature. The experimental results show that the new metrics we propose can reach up to 83% accuracy in detection and 82% accuracy in prediction, resulting competitive with the state of the art metrics.

Robinson, Joseph P., Shao, Ming, Zhao, Handong, Wu, Yue, Gillis, Timothy, Fu, Yun.  2017.  Recognizing Families In the Wild (RFIW): Data Challenge Workshop in Conjunction with ACM MM 2017. Proceedings of the 2017 Workshop on Recognizing Families In the Wild. :5–12.

Recognizing Families In the Wild (RFIW) is a large-scale, multi-track automatic kinship recognition evaluation, supporting both kinship verification and family classification on scales much larger than ever before. It was organized as a Data Challenge Workshop hosted in conjunction with ACM Multimedia 2017. This was achieved with the largest image collection that supports kin-based vision tasks. In the end, we use this manuscript to summarize evaluation protocols, progress made and some technical background and performance ratings of the algorithms used, and a discussion on promising directions for both research and engineers to be taken next in this line of work.

Zheng, J., Li, Y., Hou, Y., Gao, M., Zhou, A..  2017.  BMNR: Design and Implementation a Benchmark for Metrics of Network Robustness. 2017 IEEE International Conference on Big Knowledge (ICBK). :320–325.

The network robustness is defined by how well its vertices are connected to each other to keep the network strong and sustainable. The change of network robustness may reveal events as well as periodic trend patterns that affect the interactions among vertices in the network. The evaluation of network robustness may be helpful to many applications, such as event detection, disease transmission, and network security, etc. There are many existing metrics to evaluate the robustness of networks, for example, node connectivity, edge connectivity, algebraic connectivity, graph expansion, R-energy, and so on. It is a natural and urgent problem how to choose a reasonable metric to effectively measure and evaluate the network robustness in the real applications. In this paper, based on some general principles, we design and implement a benchmark, namely BMNR, for the metrics of network robustness. The benchmark consists of graph generator, graph attack and robustness metric evaluation. We find that R-energy can evaluate both connected and disconnected graphs, and can be computed more efficiently.

Vimalkumar, K., Radhika, N..  2017.  A Big Data Framework for Intrusion Detection in Smart Grids Using Apache Spark. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :198–204.

Technological advancement enables the need of internet everywhere. The power industry is not an exception in the technological advancement which makes everything smarter. Smart grid is the advanced version of the traditional grid, which makes the system more efficient and self-healing. Synchrophasor is a device used in smart grids to measure the values of electric waves, voltages and current. The phasor measurement unit produces immense volume of current and voltage data that is used to monitor and control the performance of the grid. These data are huge in size and vulnerable to attacks. Intrusion Detection is a common technique for finding the intrusions in the system. In this paper, a big data framework is designed using various machine learning techniques, and intrusions are detected based on the classifications applied on the synchrophasor dataset. In this approach various machine learning techniques like deep neural networks, support vector machines, random forest, decision trees and naive bayes classifications are done for the synchrophasor dataset and the results are compared using metrics of accuracy, recall, false rate, specificity, and prediction time. Feature selection and dimensionality reduction algorithms are used to reduce the prediction time taken by the proposed approach. This paper uses apache spark as a platform which is suitable for the implementation of Intrusion Detection system in smart grids using big data analytics.

Aksu, M. U., Dilek, M. H., Tatlı, E. İ, Bicakci, K., Dirik, H. İ, Demirezen, M. U., Aykır, T..  2017.  A Quantitative CVSS-Based Cyber Security Risk Assessment Methodology for IT Systems. 2017 International Carnahan Conference on Security Technology (ICCST). :1–8.

IT system risk assessments are indispensable due to increasing cyber threats within our ever-growing IT systems. Moreover, laws and regulations urge organizations to conduct risk assessments regularly. Even though there exist several risk management frameworks and methodologies, they are in general high level, not defining the risk metrics, risk metrics values and the detailed risk assessment formulas for different risk views. To address this need, we define a novel risk assessment methodology specific to IT systems. Our model is quantitative, both asset and vulnerability centric and defines low and high level risk metrics. High level risk metrics are defined in two general categories; base and attack graph-based. In our paper, we provide a detailed explanation of formulations in each category and make our implemented software publicly available for those who are interested in applying the proposed methodology to their IT systems.

Verma, D. C., de Mel, G..  2017.  Measures of Network Centricity for Edge Deployment of IoT Applications. 2017 IEEE International Conference on Big Data (Big Data). :4612–4620.

Edge Computing is a scheme to improve the performance, latency and security guidelines for IoT applications. However, edge deployment of an application also comes with additional complexity in management, an increased attack surface for security vulnerability, and could potentially result in a more expensive solution. As a result, the conditions under which an edge deployment of IoT applications delivers a better solution is not always obvious. Metrics which would be able to predict whether or not an IoT application is suitable for edge deployment can provide useful insights to address this question. In this paper, we examine the key performance indicators for IoT applications, namely the responsiveness, scalability and cost models for different types of IoT applications. Our analysis identifies that network centrality of an IoT application is a key characteristic which determines whether or not an IoT application is a good candidate for edge deployment. We discuss the different measures of network centrality that can be used to characterize applications, and the relative performance of edge deployment compared to centralized deployment for various IoT applications.

Liu, X., Xia, C., Wang, T., Zhong, L..  2017.  CloudSec: A Novel Approach to Verifying Security Conformance at the Bottom of the Cloud. 2017 IEEE International Congress on Big Data (BigData Congress). :569–576.

In the process of big data analysis and processing, a key concern blocking users from storing and processing their data in the cloud is their misgivings about the security and performance of cloud services. There is an urgent need to develop an approach that can help each cloud service provider (CSP) to demonstrate that their infrastructure and service behavior can meet the users' expectations. However, most of the prior research work focused on validating the process compliance of cloud service without an accurate description of the basic service behaviors, and could not measure the security capability. In this paper, we propose a novel approach to verify cloud service security conformance called CloudSec, which reduces the description gap between the cloud provider and customer through modeling cloud service behaviors (CloudBeh Model) and security SLA (SecSLA Model). These models enable a systematic integration of security constraints and service behavior into cloud while using UPPAAL to check the conformance, which can not only check CloudBeh performance metrics conformance, but also verify whether the security constraints meet the SecSLA. The proposed approach is validated through case study and experiments with a cloud storage service based on OpenStack, which illustrates CloudSec approach effectiveness and can be applied in real cloud scenarios.

2018-01-16
Eltayesh, Faryed, Bentahar, Jamal.  2017.  Verifiable Outsourced Database in the Cloud Using Game Theory. Proceedings of the Symposium on Applied Computing. :370–377.

In the verifiable database (VDB) model, a computationally weak client (database owner) delegates his database management to a database service provider on the cloud, which is considered untrusted third party, while users can query the data and verify the integrity of query results. Since the process can be computationally costly and has a limited support for sophisticated query types such as aggregated queries, we propose in this paper a framework that helps bridge the gap between security and practicality trade-offs. The proposed framework remodels the verifiable database problem using Stackelberg security game. In the new model, the database owner creates and uploads to the database service provider the database and its authentication structure (AS). Next, the game is played between the defender (verifier), who is a trusted party to the database owner and runs scheduled randomized verifications using Stackelberg mixed strategy, and the database service provider. The idea is to randomize the verification schedule in an optimized way that grants the optimal payoff for the verifier while making it extremely hard for the database service provider or any attacker to figure out which part of the database is being verified next. We have implemented and compared the proposed model performance with a uniform randomization model. Simulation results show that the proposed model outperforms the uniform randomization model. Furthermore, we have evaluated the efficiency of the proposed model against different cost metrics.

2017-12-20
Dong, B., Wang, H.(.  2017.  EARRING: Efficient Authentication of Outsourced Record Matching. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :225–234.

Cloud computing enables the outsourcing of big data analytics, where a third-party server is responsible for data management and processing. In this paper, we consider the outsourcing model in which a third-party server provides record matching as a service. In particular, given a target record, the service provider returns all records from the outsourced dataset that match the target according to specific distance metrics. Identifying matching records in databases plays an important role in information integration and entity resolution. A major security concern of this outsourcing paradigm is whether the service provider returns the correct record matching results. To solve the problem, we design EARRING, an Efficient Authentication of outsouRced Record matchING framework. EARRING requires the service provider to construct the verification object (VO) of the record matching results. From the VO, the client is able to catch any incorrect result with cheap computational cost. Experiment results on real-world datasets demonstrate the efficiency of EARRING.

2017-12-12
Soska, Kyle, Gates, Chris, Roundy, Kevin A., Christin, Nicolas.  2017.  Automatic Application Identification from Billions of Files. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :2021–2030.

Understanding how to group a set of binary files into the piece of software they belong to is highly desirable for software profiling, malware detection, or enterprise audits, among many other applications. Unfortunately, it is also extremely challenging: there is absolutely no uniformity in the ways different applications rely on different files, in how binaries are signed, or in the versioning schemes used across different pieces of software. In this paper, we show that, by combining information gleaned from a large number of endpoints (millions of computers), we can accomplish large-scale application identification automatically and reliably. Our approach relies on collecting metadata on billions of files every day, summarizing it into much smaller "sketches", and performing approximate k-nearest neighbor clustering on non-metric space representations derived from these sketches. We design and implement our proposed system using Apache Spark, show that it can process billions of files in a matter of hours, and thus could be used for daily processing. We further show our system manages to successfully identify which files belong to which application with very high precision, and adequate recall.

2017-04-03
Urbina, David I., Giraldo, Jairo A., Cardenas, Alvaro A., Tippenhauer, Nils Ole, Valente, Junia, Faisal, Mustafa, Ruths, Justin, Candell, Richard, Sandberg, Henrik.  2016.  Limiting the Impact of Stealthy Attacks on Industrial Control Systems. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1092–1105.

While attacks on information systems have for most practical purposes binary outcomes (information was manipulated/eavesdropped, or not), attacks manipulating the sensor or control signals of Industrial Control Systems (ICS) can be tuned by the attacker to cause a continuous spectrum in damages. Attackers that want to remain undetected can attempt to hide their manipulation of the system by following closely the expected behavior of the system, while injecting just enough false information at each time step to achieve their goals. In this work, we study if attack-detection can limit the impact of such stealthy attacks. We start with a comprehensive review of related work on attack detection schemes in the security and control systems community. We then show that many of those works use detection schemes that are not limiting the impact of stealthy attacks. We propose a new metric to measure the impact of stealthy attacks and how they relate to our selection on an upper bound on false alarms. We finally show that the impact of such attacks can be mitigated in several cases by the proper combination and configuration of detection schemes. We demonstrate the effectiveness of our algorithms through simulations and experiments using real ICS testbeds and real ICS systems.

Theisen, Christopher, Williams, Laurie.  2016.  Risk-based Attack Surface Approximation: Poster. Proceedings of the Symposium and Bootcamp on the Science of Security. :121–123.

Proactive security review and test efforts are a necessary component of the software development lifecycle. Since resource limitations often preclude reviewing, testing and fortifying the entire code base, prioritizing what code to review/test can improve a team's ability to find and remove more vulnerabilities that are reachable by an attacker. One way that professionals perform this prioritization is the identification of the attack surface of software systems. However, identifying the attack surface of a software system is non-trivial. The goal of this poster is to present the concept of a risk-based attack surface approximation based on crash dump stack traces for the prioritization of security code rework efforts. For this poster, we will present results from previous efforts in the attack surface approximation space, including studies on its effectiveness in approximating security relevant code for Windows and Firefox. We will also discuss future research directions for attack surface approximation, including discovery of additional metrics from stack traces and determining how many stack traces are required for a good approximation.

Kang, Chanhyun, Park, Noseong, Prakash, B. Aditya, Serra, Edoardo, Subrahmanian, V. S..  2016.  Ensemble Models for Data-driven Prediction of Malware Infections. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :583–592.

Given a history of detected malware attacks, can we predict the number of malware infections in a country? Can we do this for different malware and countries? This is an important question which has numerous implications for cyber security, right from designing better anti-virus software, to designing and implementing targeted patches to more accurately measuring the economic impact of breaches. This problem is compounded by the fact that, as externals, we can only detect a fraction of actual malware infections. In this paper we address this problem using data from Symantec covering more than 1.4 million hosts and 50 malware spread across 2 years and multiple countries. We first carefully design domain-based features from both malware and machine-hosts perspectives. Secondly, inspired by epidemiological and information diffusion models, we design a novel temporal non-linear model for malware spread and detection. Finally we present ESM, an ensemble-based approach which combines both these methods to construct a more accurate algorithm. Using extensive experiments spanning multiple malware and countries, we show that ESM can effectively predict malware infection ratios over time (both the actual number and trend) upto 4 times better compared to several baselines on various metrics. Furthermore, ESM's performance is stable and robust even when the number of detected infections is low.

Theisen, Christopher.  2016.  Reusing Stack Traces: Automated Attack Surface Approximation. Proceedings of the 38th International Conference on Software Engineering Companion. :859–862.

Security requirements around software systems have become more stringent as society becomes more interconnected via the Internet. New ways of prioritizing security efforts are needed so security professionals can use their time effectively to find security vulnerabilities or prevent them from occurring in the first place. The goal of this work is to help software development teams prioritize security efforts by approximating the attack surface of a software system via stack trace analysis. Automated attack surface approximation is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. If a code entity (a binary, file or function) appears on stack traces, then Attack Surface Approximation (ASA) considers that code entity is on the attack surface of the software system. We also explore whether number of appearances of code on stack traces correlates with where security vulnerabilities are found. To date, feasibility studies of ASA have been performed on Windows 8 and 8.1, and Mozilla Firefox. The results from these studies indicate that ASA may be useful for practitioners trying to secure their software systems. We are now working towards establishing the ground truth of what the attack surface of software systems is, along with looking at how ASA could change over time, among other metrics.

Savola, Reijo M., Savolainen, Pekka, Salonen, Jarno.  2016.  Towards Security Metrics-supported IP Traceback. Proccedings of the 10th European Conference on Software Architecture Workshops. :32:1–32:5.

The threat of DDOS and other cyberattacks has increased during the last decade. In addition to the radical increase in the number of attacks, they are also becoming more sophisticated with the targets ranging from ordinary users to service providers and even critical infrastructure. According to some resources, the sophistication of attacks is increasing faster than the mitigating actions against them. For example determining the location of the attack origin is becoming impossible as cyber attackers employ specific means to evade detection of the attack origin by default, such as using proxy services and source address spoofing. The purpose of this paper is to initiate discussion about effective Internet Protocol traceback mechanisms that are needed to overcome this problem. We propose an approach for traceback that is based on extensive use of security metrics before (proactive) and during (reactive) the attacks.

Taylor, Joshua, Zaffarano, Kara, Koller, Ben, Bancroft, Charlie, Syversen, Jason.  2016.  Automated Effectiveness Evaluation of Moving Target Defenses: Metrics for Missions and Attacks. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :129–134.

In this paper, we describe the results of several experiments designed to test two dynamic network moving target defenses against a propagating data exfiltration attack. We designed a collection of metrics to assess the costs to mission activities and the benefits in the face of attacks and evaluated the impacts of the moving target defenses in both areas. Experiments leveraged Siege's Cyber-Quantification Framework to automatically provision the networks used in the experiment, install the two moving target defenses, collect data, and analyze the results. We identify areas in which the costs and benefits of the two moving target defenses differ, and note some of their unique performance characteristics.

Purvine, Emilie, Johnson, John R., Lo, Chaomei.  2016.  A Graph-Based Impact Metric for Mitigating Lateral Movement Cyber Attacks. Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :45–52.

Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.

2017-03-20
Munaiah, Nuthan, Meneely, Andrew.  2016.  Beyond the Attack Surface: Assessing Security Risk with Random Walks on Call Graphs. Proceedings of the 2016 ACM Workshop on Software PROtection. :3–14.

When reasoning about software security, researchers and practitioners use the phrase ``attack surface'' as a metaphor for risk. Enumerate and minimize the ways attackers can break in then risk is reduced and the system is better protected, the metaphor says. But software systems are much more complicated than their surfaces. We propose function- and file-level attack surface metrics–-proximity and risky walk–-that enable fine-grained risk assessment. Our risky walk metric is highly configurable: we use PageRank on a probability-weighted call graph to simulate attacker behavior of finding or exploiting a vulnerability. We provide evidence-based guidance for deploying these metrics, including an extensive parameter tuning study. We conducted an empirical study on two large open source projects, FFmpeg and Wireshark, to investigate the potential correlation between our metrics and historical post-release vulnerabilities. We found our metrics to be statistically significantly associated with vulnerable functions/files with a small-to-large Cohen's d effect size. Our prediction model achieved an increase of 36% (in FFmpeg) and 27% (in Wireshark) in the average value of F-measure over a base model built with SLOC and coupling metrics. Our prediction model outperformed comparable models from prior literature with notable improvements: 58% reduction in false negative rate, 81% reduction in false positive rate, and 548% increase in F-measure. These metrics advance vulnerability prevention by [(a)] being flexible in terms of granularity, performing better than vulnerability prediction literature, and being tunable so that practitioners can tailor the metrics to their products and better assess security risk.

Krutz, Daniel E., Munaiah, Nuthan, Meneely, Andrew, Malachowsky, Samuel A..  2016.  Examining the Relationship Between Security Metrics and User Ratings of Mobile Apps: A Case Study. Proceedings of the International Workshop on App Market Analytics. :8–14.

The success or failure of a mobile application (`app') is largely determined by user ratings. Users frequently make their app choices based on the ratings of apps in comparison with similar, often competing apps. Users also expect apps to continually provide new features while maintaining quality, or the ratings drop. At the same time apps must also be secure, but is there a historical trade-off between security and ratings? Or are app store ratings a more all-encompassing measure of product maturity? We used static analysis tools to collect security-related metrics in 38,466 Android apps from the Google Play store. We compared the rate of an app's permission misuse, number of requested permissions, and Androrisk score, against its user rating. We found that high-rated apps have statistically significantly higher security risk metrics than low-rated apps. However, the correlations are weak. This result supports the conventional wisdom that users are not factoring security risks into their ratings in a meaningful way. This could be due to several reasons including users not placing much emphasis on security, or that the typical user is unable to gauge the security risk level of the apps they use everyday.

Canfora, Gerardo, Medvet, Eric, Mercaldo, Francesco, Visaggio, Corrado Aaron.  2016.  Acquiring and Analyzing App Metrics for Effective Mobile Malware Detection. Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics. :50–57.

Android malware is becoming very effective in evading detection techniques, and traditional malware detection techniques are demonstrating their weaknesses. Signature based detection shows at least two drawbacks: first, the detection is possible only after the malware has been identified, and the time needed to produce and distribute the signature provides attackers with window of opportunities for spreading the malware in the wild. For solving this problem, different approaches that try to characterize the malicious behavior through the invoked system and API calls emerged. Unfortunately, several evasion techniques have proven effective to evade detection based on system and API calls. In this paper, we propose an approach for capturing the malicious behavior in terms of device resource consumption (using a thorough set of features), which is much more difficult to camouflage. We describe a procedure, and the corresponding practical setting, for extracting those features with the aim of maximizing their discriminative power. Finally, we describe the promising results we obtained experimenting on more than 2000 applications, on which our approach exhibited an accuracy greater than 99%.