Kropp, Alexander, Schwalbe, Mario, Tsokalo, Ievgenii A., Süβkraut, Martin, Schmoll, Robert-Steve, Fitzek, Frank H.P..
2021.
Reliable Control for Robotics - Hardware Resilience Powered by Software. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
Industry 4.0 is now much more than just a buzzword. However, with the advancement of automation through digitization and softwarization of dedicated hardware, applications are also becoming more susceptible to random hardware errors in the calculation. This cyber-physical demonstrator uses a robotic application to show the effects that even single bit flips can have in the real world due to hardware errors. Using the graphical user interface including the human machine interface, the audience can generate hardware errors in the form of bit flips and see their effects live on the robot. In this paper we will be showing a new technology, the SIListra Safety Transformer (SST), that makes it possible to detect those kind of random hardware errors, which can subsequently make safety-critical applications more reliable.
Fitzek, Frank H.P., Li, Shu-Chen, Speidel, Stefanie, Strufe, Thorsten, Seeling, Patrick.
2021.
Frontiers of Transdisciplinary Research in Tactile Internet with Human-in-the-Loop. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
Recent technological advances in developing intelligent telecommunication networks, ultra-compact bendable wireless transceiver chips, adaptive wearable sensors and actuators, and secure computing infrastructures along with the progress made in psychology and neuroscience for understanding neu-rocognitive and computational principles of human behavior combined have paved the way for a new field of research: Tactile Internet with Human-in-the-Loop (TaHiL). This emerging field of transdisciplinary research aims to promote next generation digitalized human-machine interactions in perceived real time. To achieve this goal, mechanisms and principles of human goal-directed multisensory perception and action need to be integrated into technological designs for breakthrough innovations in mobile telecommunication, electronics and materials engineering, as well as computing. This overview highlights key challenges and the frontiers of research in the new field of TaHiL. Revolutionizing the current Internet as a digital infrastructure for sharing visual and auditory information globally, the TaHiL research will enable humans to share tactile and haptic information and thus veridically immerse themselves into virtual, remote, or inaccessible real environments to exchange skills and expertise with other humans or machines for applications in medicine, industry, and the Internet of Skills.