Biblio
Increase in M2M use cases, the availability of narrow band spectrum with operators and a need for very low cost modems for M2M applications has led to the discussions around what is called as Cellular IOT (CIOT). In order to develop the Cellular IOT network, discussions are focused around developing a new air interface that can leverage narrow band spectrum as well as lead to low cost modems which can be embedded into M2M/IOT devices. One key issue that arises during the development of a clean slate CIOT network is that of coexistence with the 4G networks. In this paper we explore architectures for Cellular IOT and 4G network harmonization that also addresses the one key requirement of possibly using narrow channels for IOT on the existing 4G networks and not just as a separate standalone Cellular IOT system. We analyze the architectural implication on the core network load in a tightly coupled CIOT-LTE architecture propose a offload mechanism from LTE to CIOT cells.
Simple connectivity and data requirements together with high lifetime of battery are the main issues for the machine-to-machine (M2M) communications. 3GPP focuses on three main licensed standardizations based on Long Term Evolution (LTE), GSM and clean-slate technologies. The paper considers the last one and proposes a modified slotted-Aloha method to increase the capability of supporting a massive number of low-throughput devices. The proposed method increases the access rate of users belonging to each class considered in the clean-slate standard and consequently the total throughput offered by the system. To derive the mean access rate per class, we use the Markov chain approach and simulation results are provided for scenarios with different data rate and also in terms of cell average delay.