Visible to the public Biblio

Filters: Author is Boche, Holger  [Clear All Filters]
2023-09-01
Torres-Figueroa, Luis, Hörmann, Markus, Wiese, Moritz, Mönich, Ullrich J., Boche, Holger, Holschke, Oliver, Geitz, Marc.  2022.  Implementation of Physical Layer Security into 5G NR Systems and E2E Latency Assessment. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4044—4050.
This paper assesses the impact on the performance that information-theoretic physical layer security (IT-PLS) introduces when integrated into a 5G New Radio (NR) system. For this, we implement a wiretap code for IT-PLS based on a modular coding scheme that uses a universal-hash function in its security layer. The main advantage of this approach lies in its flexible integration into the lower layers of the 5G NR protocol stack without affecting the communication's reliability. Specifically, we use IT-PLS to secure the transmission of downlink control information by integrating an extra pre-coding security layer as part of the physical downlink control channel (PDCCH) procedures, thus not requiring any change of the 3GPP 38 series standard. We conduct experiments using a real-time open-source 5G NR standalone implementation and use software-defined radios for over-the-air transmissions in a controlled laboratory environment. The overhead added by IT-PLS is determined in terms of the latency introduced into the system, which is measured at the physical layer for an end-to-end (E2E) connection between the gNB and the user equipment.
2023-04-14
Boche, Holger, Cai, Minglai, Wiese, Moritz.  2022.  Mosaics of Combinatorial Designs for Semantic Security on Quantum Wiretap Channels. 2022 IEEE International Symposium on Information Theory (ISIT). :856–861.
We study semantic security for classical-quantum channels. Our security functions are functional forms of mosaics of combinatorial designs. We extend methods in [25] from classical channels to classical-quantum channels to demonstrate that mosaics of designs ensure semantic security for classical-quantum channels, and are also capacity achieving coding schemes. An advantage of these modular wiretap codes is that we provide explicit code constructions that can be implemented in practice for every channel, given an arbitrary public code.
ISSN: 2157-8117
2022-12-01
Torres-Figueroa, Luis, Mönich, Ullrich J., Voichtleitner, Johannes, Frank, Anna, Andrei, Vlad-Costin, Wiese, Moritz, Boche, Holger.  2021.  Experimental Evaluation of a Modular Coding Scheme for Physical Layer Security. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
In this paper we use a seeded modular coding scheme for implementing physical layer security in a wiretap scenario. This modular scheme consists of a traditional coding layer and a security layer. For the traditional coding layer, we use a polar code. We evaluate the performance of the seeded modular coding scheme in an experimental setup with software defined radios and compare these results to simulation results. In order to assess the secrecy level of the scheme, we employ the distinguishing security metric. In our experiments, we compare the distinguishing error rate for different seeds and block lengths.
2022-04-19
Boche, Holger, Schaefer, Rafael F., Vincent Poor, H..  2021.  Real Number Signal Processing Can Detect Denial-of-Service Attacks. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4765–4769.
Wireless communication systems are inherently vulnerable to adversarial attacks since malevolent jammers might jam and disrupt the legitimate transmission intentionally. Of particular interest are so- called denial-of-service (DoS) attacks in which the jammer is able to completely disrupt the communication. Accordingly, it is of crucial interest for the legitimate users to detect such DoS attacks. Turing machines provide the fundamental limits of today's digital computers and therewith of the traditional signal processing. It has been shown that these are incapable of detecting DoS attacks. This stimulates the question of how powerful the signal processing must be to enable the detection of DoS attacks. This paper investigates the general computation framework of Blum-Shub-Smale machines which allows the processing and storage of arbitrary reals. It is shown that such real number signal processing then enables the detection of DoS attacks.
2020-04-06
Frank, Anna, Aydinian, Harout, Boche, Holger.  2019.  Delay Optimal Coding for Secure Transmission over a Burst Erasure Wiretap Channel. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1—7.

We consider transmissions of secure messages over a burst erasure wiretap channel under decoding delay constraint. For block codes we introduce and study delay optimal secure burst erasure correcting (DO-SBE) codes that provide perfect security and recover a burst of erasures of a limited length with minimum possible delay. Our explicit constructions of DO-SBE block codes achieve maximum secrecy rate. We also consider a model of a burst erasure wiretap channel for the streaming setup, where in any sliding window of a given size, in a stream of encoded source packets, the eavesdropper is able to observe packets in an interval of a given size. For that model we obtain an information theoretic upper bound on the secrecy rate for delay optimal streaming codes. We show that our block codes can be used for construction of delay optimal burst erasure correcting streaming codes which provide perfect security and meet the upper bound for a certain class of code parameters.

2020-03-04
Schaefer, Rafael F., Boche, Holger, Poor, H. Vincent.  2019.  Turing Meets Shannon: On the Algorithmic Computability of the Capacities of Secure Communication Systems (Invited Paper). 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.

This paper presents the recent progress in studying the algorithmic computability of capacity expressions of secure communication systems. Several communication scenarios are discussed and reviewed including the classical wiretap channel, the wiretap channel with an active jammer, and the problem of secret key generation.

Wiese, Moritz, Boche, Holger.  2019.  A Graph-Based Modular Coding Scheme Which Achieves Semantic Security. 2019 IEEE International Symposium on Information Theory (ISIT). :822–826.

It is investigated how to achieve semantic security for the wiretap channel. A new type of functions called biregular irreducible (BRI) functions, similar to universal hash functions, is introduced. BRI functions provide a universal method of establishing secrecy. It is proved that the known secrecy rates of any discrete and Gaussian wiretap channel are achievable with semantic security by modular wiretap codes constructed from a BRI function and an error-correcting code. A characterization of BRI functions in terms of edge-disjoint biregular graphs on a common vertex set is derived. This is used to study examples of BRI functions and to construct new ones.