Visible to the public Biblio

Filters: Keyword is Weapons  [Clear All Filters]
2020-09-04
Kanemura, Kota, Toyoda, Kentaroh, Ohtsuki, Tomoaki.  2019.  Identification of Darknet Markets’ Bitcoin Addresses by Voting Per-address Classification Results. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :154—158.
Bitcoin is a decentralized digital currency whose transactions are recorded in a common ledger, so called blockchain. Due to the anonymity and lack of law enforcement, Bitcoin has been misused in darknet markets which deal with illegal products, such as drugs and weapons. Therefore from the security forensics aspect, it is demanded to establish an approach to identify newly emerged darknet markets' transactions and addresses. In this paper, we thoroughly analyze Bitcoin transactions and addresses related to darknet markets and propose a novel identification method of darknet markets' addresses. To improve the identification performance, we propose a voting based method which decides the labels of multiple addresses controlled by the same user based on the number of the majority label. Through the computer simulation with more than 200K Bitcoin addresses, it was shown that our voting based method outperforms the nonvoting based one in terms of precision, recal, and F1 score. We also found that DNM's addresses pay higher fees than others, which significantly improves the classification.
2020-08-07
Yan, Dingyu, Liu, Feng, Jia, Kun.  2019.  Modeling an Information-Based Advanced Persistent Threat Attack on the Internal Network. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—7.
An advanced persistent threat (APT) attack is a powerful cyber-weapon aimed at the specific targets in cyberspace. The sophisticated attack techniques, long dwell time and specific objectives make the traditional defense mechanism ineffective. However, most existing studies fail to consider the theoretical modeling of the whole APT attack. In this paper, we mainly establish a theoretical framework to characterize an information-based APT attack on the internal network. In particular, our mathematical framework includes the initial entry model for selecting the entry points and the targeted attack model for studying the intelligence gathering, strategy decision-making, weaponization and lateral movement. Through a series of simulations, we find the optimal candidate nodes in the initial entry model, observe the dynamic change of the targeted attack model and verify the characteristics of the APT attack.
2020-07-10
Godawatte, Kithmini, Raza, Mansoor, Murtaza, Mohsin, Saeed, Ather.  2019.  Dark Web Along With The Dark Web Marketing And Surveillance. 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). :483—485.

Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.

2020-07-03
Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.

Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.

2019-12-18
Alperovitch, Dmitri.  2011.  Towards establishment of cyberspace deterrence strategy. 2011 3rd International Conference on Cyber Conflict. :1–8.
The question of whether strategic deterrence in cyberspace is achievable given the challenges of detection, attribution and credible retaliation is a topic of contention among military and civilian defense strategists. This paper examines the traditional strategic deterrence theory and its application to deterrence in cyberspace (the newly defined 5th battlespace domain, following land, air, sea and space domains), which is being used increasingly by nation-states and their proxies to achieve information dominance and to gain tactical and strategic economic and military advantage. It presents a taxonomy of cyberattacks that identifies which types of threats in the confidentiality, integrity, availability cybersecurity model triad present the greatest risk to nation-state economic and military security, including their political and social facets. The argument is presented that attacks on confidentiality cannot be subject to deterrence in the current international legal framework and that the focus of strategy needs to be applied to integrity and availability attacks. A potential cyberdeterrence strategy is put forth that can enhance national security against devastating cyberattacks through a credible declaratory retaliation capability that establishes red lines which may trigger a counter-strike against all identifiable responsible parties. The author believes such strategy can credibly influence nation-state threat actors who themselves exhibit serious vulnerabilities to cyber attacks from launching a devastating cyber first strike.
2019-08-26
Araujo, F., Taylor, T., Zhang, J., Stoecklin, M..  2018.  Cross-Stack Threat Sensing for Cyber Security and Resilience. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :18-21.

We propose a novel cross-stack sensor framework for realizing lightweight, context-aware, high-interaction network and endpoint deceptions for attacker disinformation, misdirection, monitoring, and analysis. In contrast to perimeter-based honeypots, the proposed method arms production workloads with deceptive attack-response capabilities via injection of booby-traps at the network, endpoint, operating system, and application layers. This provides defenders with new, potent tools for more effectively harvesting rich cyber-threat data from the myriad of attacks launched by adversaries whose identities and methodologies can be better discerned through direct engagement rather than purely passive observations of probe attempts. Our research provides new tactical deception capabilities for cyber operations, including new visibility into both enterprise and national interest networks, while equipping applications and endpoints with attack awareness and active mitigation capabilities.

2019-03-22
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

2019-01-21
Cho, S., Han, I., Jeong, H., Kim, J., Koo, S., Oh, H., Park, M..  2018.  Cyber Kill Chain based Threat Taxonomy and its Application on Cyber Common Operational Picture. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Over a decade, intelligent and persistent forms of cyber threats have been damaging to the organizations' cyber assets and missions. In this paper, we analyze current cyber kill chain models that explain the adversarial behavior to perform advanced persistent threat (APT) attacks, and propose a cyber kill chain model that can be used in view of cyber situation awareness. Based on the proposed cyber kill chain model, we propose a threat taxonomy that classifies attack tactics and techniques for each attack phase using CAPEC, ATT&CK that classify the attack tactics, techniques, and procedures (TTPs) proposed by MITRE. We also implement a cyber common operational picture (CyCOP) to recognize the situation of cyberspace. The threat situation can be represented on the CyCOP by applying cyber kill chain based threat taxonomy.

2018-09-12
Rahayuda, I. G. S., Santiari, N. P. L..  2017.  Crawling and cluster hidden web using crawler framework and fuzzy-KNN. 2017 5th International Conference on Cyber and IT Service Management (CITSM). :1–7.
Today almost everyone is using internet for daily activities. Whether it's for social, academic, work or business. But only a few of us are aware that internet generally we access only a small part of the overall of internet access. The Internet or the world wide web is divided into several levels, such as web surfaces, deep web or dark web. Accessing internet into deep or dark web is a dangerous thing. This research will be conducted with research on web content and deep content. For a faster and safer search, in this research will be use crawler framework. From the search process will be obtained various kinds of data to be stored into the database. The database classification process will be implemented to know the level of the website. The classification process is done by using the fuzzy-KNN method. The fuzzy-KNN method classifies the results of the crawling framework that contained in the database. Crawling framework will generate data in the form of url address, page info and other. Crawling data will be compared with predefined sample data. The classification result of fuzzy-KNN will result in the data of the web level based on the value of the word specified in the sample data. From the research conducted on several data tests that found there are as much as 20% of the web surface, 7.5% web bergie, 20% deep web, 22.5% charter and 30% dark web. Research is only done on some test data, it is necessary to add some data in order to get better result. Better crawler frameworks can speed up crawling results, especially at certain web levels because not all crawler frameworks can work at a particular web level, the tor browser's can be used but the crawler framework sometimes can not work.
2018-06-07
Akcay, S., Breckon, T. P..  2017.  An evaluation of region based object detection strategies within X-ray baggage security imagery. 2017 IEEE International Conference on Image Processing (ICIP). :1337–1341.

Here we explore the applicability of traditional sliding window based convolutional neural network (CNN) detection pipeline and region based object detection techniques such as Faster Region-based CNN (R-CNN) and Region-based Fully Convolutional Networks (R-FCN) on the problem of object detection in X-ray security imagery. Within this context, with limited dataset availability, we employ a transfer learning paradigm for network training tackling both single and multiple object detection problems over a number of R-CNN/R-FCN variants. The use of first-stage region proposal within the Faster RCNN and R-FCN provide superior results than traditional sliding window driven CNN (SWCNN) approach. With the use of Faster RCNN with VGG16, pretrained on the ImageNet dataset, we achieve 88.3 mAP for a six object class X-ray detection problem. The use of R-FCN with ResNet-101, yields 96.3 mAP for the two class firearm detection problem requiring 0.1 second computation per image. Overall we illustrate the comparative performance of these techniques as object localization strategies within cluttered X-ray security imagery.

2018-05-30
Shahriar, H., Bond, W..  2017.  Towards an Attack Signature Generation Framework for Intrusion Detection Systems. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :597–603.
Attacks on web services are major concerns and can expose organizations valuable information resources. Despite there are increasing awareness in secure programming, we still find vulnerabilities in web services. To protect deployed web services, it is important to have defense techniques. Signaturebased Intrusion Detection Systems (IDS) have gained popularity to protect applications against attacks. However, signature IDSs have limited number of attack signatures. In this paper, we propose a Genetic Algorithm (GA)-based attack signature generation approach and show its application for web services. GA algorithm has the capability of generating new member from a set of initial population. We leverage this by generating new attack signatures at SOAP message level to overcome the challenge of limited number of attack signatures. The key contributions include defining chromosomes and fitness functions. The initial results show that the GA-based IDS can generate new signatures and complement the limitation of existing web security testing tools. The approach can generate new attack signatures for injection, privilege escalation, denial of service and information leakage.
2018-04-11
Gebhardt, D., Parikh, K., Dzieciuch, I., Walton, M., Hoang, N. A. V..  2017.  Hunting for Naval Mines with Deep Neural Networks. OCEANS 2017 - Anchorage. :1–5.

Explosive naval mines pose a threat to ocean and sea faring vessels, both military and civilian. This work applies deep neural network (DNN) methods to the problem of detecting minelike objects (MLO) on the seafloor in side-scan sonar imagery. We explored how the DNN depth, memory requirements, calculation requirements, and training data distribution affect detection efficacy. A visualization technique (class activation map) was incorporated that aids a user in interpreting the model's behavior. We found that modest DNN model sizes yielded better accuracy (98%) than very simple DNN models (93%) and a support vector machine (78%). The largest DNN models achieved textless;1% efficacy increase at a cost of a 17x increase of trainable parameter count and computation requirements. In contrast to DNNs popularized for many-class image recognition tasks, the models for this task require far fewer computational resources (0.3% of parameters), and are suitable for embedded use within an autonomous unmanned underwater vehicle.

2017-11-03
Zulkarnine, A. T., Frank, R., Monk, B., Mitchell, J., Davies, G..  2016.  Surfacing collaborated networks in dark web to find illicit and criminal content. 2016 IEEE Conference on Intelligence and Security Informatics (ISI). :109–114.
The Tor Network, a hidden part of the Internet, is becoming an ideal hosting ground for illegal activities and services, including large drug markets, financial frauds, espionage, child sexual abuse. Researchers and law enforcement rely on manual investigations, which are both time-consuming and ultimately inefficient. The first part of this paper explores illicit and criminal content identified by prominent researchers in the dark web. We previously developed a web crawler that automatically searched websites on the internet based on pre-defined keywords and followed the hyperlinks in order to create a map of the network. This crawler has demonstrated previous success in locating and extracting data on child exploitation images, videos, keywords and linkages on the public internet. However, as Tor functions differently at the TCP level, and uses socket connections, further technical challenges are faced when crawling Tor. Some of the other inherent challenges for advanced Tor crawling include scalability, content selection tradeoffs, and social obligation. We discuss these challenges and the measures taken to meet them. Our modified web crawler for Tor, termed the “Dark Crawler” has been able to access Tor while simultaneously accessing the public internet. We present initial findings regarding what extremist and terrorist contents are present in Tor and how this content is connected to each other in a mapped network that facilitates dark web crimes. Our results so far indicate the most popular websites in the dark web are acting as catalysts for dark web expansion by providing necessary knowledgebase, support and services to build Tor hidden services and onion websites.
Baravalle, A., Lopez, M. S., Lee, S. W..  2016.  Mining the Dark Web: Drugs and Fake Ids. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). :350–356.
In the last years, governmental bodies have been futilely trying to fight against dark web marketplaces. Shortly after the closing of "The Silk Road" by the FBI and Europol in 2013, new successors have been established. Through the combination of cryptocurrencies and nonstandard communication protocols and tools, agents can anonymously trade in a marketplace for illegal items without leaving any record. This paper presents a research carried out to gain insights on the products and services sold within one of the larger marketplaces for drugs, fake ids and weapons on the Internet, Agora. Our work sheds a light on the nature of the market, there is a clear preponderance of drugs, which accounts for nearly 80% of the total items on sale. The ready availability of counterfeit documents, while they make up for a much smaller percentage of the market, raises worries. Finally, the role of organized crime within Agora is discussed and presented.
2015-04-30
Riveiro, M., Lebram, M., Warston, H..  2014.  On visualizing threat evaluation configuration processes: A design proposal. Information Fusion (FUSION), 2014 17th International Conference on. :1-8.

Threat evaluation is concerned with estimating the intent, capability and opportunity of detected objects in relation to our own assets in an area of interest. To infer whether a target is threatening and to which degree is far from a trivial task. Expert operators have normally to their aid different support systems that analyze the incoming data and provide recommendations for actions. Since the ultimate responsibility lies in the operators, it is crucial that they trust and know how to configure and use these systems, as well as have a good understanding of their inner workings, strengths and limitations. To limit the negative effects of inadequate cooperation between the operators and their support systems, this paper presents a design proposal that aims at making the threat evaluation process more transparent. We focus on the initialization, configuration and preparation phases of the threat evaluation process, supporting the user in the analysis of the behavior of the system considering the relevant parameters involved in the threat estimations. For doing so, we follow a known design process model and we implement our suggestions in a proof-of-concept prototype that we evaluate with military expert system designers.

Mitchell, R., Ing-Ray Chen.  2014.  Adaptive Intrusion Detection of Malicious Unmanned Air Vehicles Using Behavior Rule Specifications. Systems, Man, and Cybernetics: Systems, IEEE Transactions on. 44:593-604.


In this paper, we propose an adaptive specification-based intrusion detection system (IDS) for detecting malicious unmanned air vehicles (UAVs) in an airborne system in which continuity of operation is of the utmost importance. An IDS audits UAVs in a distributed system to determine if the UAVs are functioning normally or are operating under malicious attacks. We investigate the impact of reckless, random, and opportunistic attacker behaviors (modes which many historical cyber attacks have used) on the effectiveness of our behavior rule-based UAV IDS (BRUIDS) which bases its audit on behavior rules to quickly assess the survivability of the UAV facing malicious attacks. Through a comparative analysis with the multiagent system/ant-colony clustering model, we demonstrate a high detection accuracy of BRUIDS for compliant performance. By adjusting the detection strength, BRUIDS can effectively trade higher false positives for lower false negatives to cope with more sophisticated random and opportunistic attackers to support ultrasafe and secure UAV applications.