Visible to the public Biblio

Filters: Keyword is robust control  [Clear All Filters]
2023-06-09
Kumar, Vivek, Hote, Yogesh V..  2022.  Analyzing and Mitigating of Time Delay Attack (TDA) by using Fractional Filter based IMC-PID with Smith Predictor. 2022 IEEE 61st Conference on Decision and Control (CDC). :3194—3199.
In this era, with a great extent of automation and connection, modern production processes are highly prone to cyber-attacks. The sensor-controller chain becomes an obvious target for attacks because sensors are commonly used to regulate production facilities. In this research, we introduce a new control configuration for the system, which is sensitive to time delay attacks (TDA), in which data transfer from the sensor to the controller is intentionally delayed. The attackers want to disrupt and damage the system by forcing controllers to use obsolete data about the system status. In order to improve the accuracy of delay identification and prediction, as well as erroneous limit and estimation for control, a new control structure is developed by an Internal Model Control (IMC) based Proportional-Integral-Derivative (PID) scheme with a fractional filter. An additional concept is included to mitigate the effect of time delay attack, i.e., the smith predictor. Simulation studies of the established control framework have been implemented with two numerical examples. The performance assessment of the proposed method has been done based on integral square error (ISE), integral absolute error (IAE) and total variation (TV).
2023-05-12
Belmouhoub, Amina, Bouzid, Yasser, Medjmadj, Slimane, Derrouaoui, Saddam Hocine, Guiatni, Mohamed.  2022.  Advanced Backstepping Control: Application on a Foldable Quadrotor. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :609–615.
This paper deals with the implementation of robust control, based on the finite time Lyapunov stability theory, to solve the trajectory tracking problem of an unconventional quadrotor with rotating arms (also known as foldable drone). First, the model of this Unmanned Aerial Vehicle (UAV) taking into consideration the variation of the inertia, the Center of Gravity (CoG) and the control matrix is presented. The theoretical foundations of backstepping control enhanced by a Super-Twisting (ST) algorithm are then discussed. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategy. Finally, a qualitative and quantitative comparative study is made between the proposed controller and the classical backstepping controller. Overall, the results obtained show that the proposed control approach provides better performance in terms of accuracy and resilience.
ISSN: 2474-0446
Germanà, Roberto, Giuseppi, Alessandro, Pietrabissa, Antonio, Di Giorgio, Alessandro.  2022.  Optimal Energy Storage System Placement for Robust Stabilization of Power Systems Against Dynamic Load Altering Attacks. 2022 30th Mediterranean Conference on Control and Automation (MED). :821–828.
This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
ISSN: 2473-3504
2022-08-26
Elumar, Eray Can, Yagan, Osman.  2021.  Robustness of Random K-out Graphs. 2021 60th IEEE Conference on Decision and Control (CDC). :5526—5531.
We consider a graph property known as r-robustness of the random K-out graphs. Random K-out graphs, denoted as \$\textbackslashtextbackslashmathbbH(n;K)\$, are constructed as follows. Each of the n nodes select K distinct nodes uniformly at random, and then an edge is formed between these nodes. The orientation of the edges is ignored, resulting in an undirected graph. Random K-out graphs have been used in many applications including random (pairwise) key predistribution in wireless sensor networks, anonymous message routing in crypto-currency networks, and differentially-private federated averaging. r-robustness is an important metric in many applications where robustness of networks to disruptions is of practical interest, and r-robustness is especially useful in analyzing consensus dynamics. It was previously shown that consensus can be reached in an r-robust network for sufficiently large r even in the presence of some adversarial nodes. r-robustness is also useful for resilience against adversarial attacks or node failures since it is a stronger property than r-connectivity and thus can provide guarantees on the connectivity of the graph when up to r – 1 nodes in the graph are removed. In this paper, we provide a set of conditions for Kn and n that ensure, with high probability (whp), the r-robustness of the random K-out graph.
2021-03-17
Kushal, T. R. B., Gao, Z., Wang, J., Illindala, M. S..  2020.  Causal Chain of Time Delay Attack on Synchronous Generator Control. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.

Wide integration of information and communication technology (ICT) in modern power grids has brought many benefits as well as the risk of cyber attacks. A critical step towards defending grid cyber security is to understand the cyber-physical causal chain, which describes the progression of intrusion in cyber-space leading to the formation of consequences on the physical power grid. In this paper, we develop an attack vector for a time delay attack at load frequency control in the power grid. Distinct from existing works, which are separately focused on cyber intrusion, grid response, or testbed validation, the proposed attack vector for the first time provides a full cyber-physical causal chain. It targets specific vulnerabilities in the protocols, performs a denial-of-service (DoS) attack, induces the delays in control loop, and destabilizes grid frequency. The proposed attack vector is proved in theory, presented as an attack tree, and validated in an experimental environment. The results will provide valuable insights to develop security measures and robust controls against time delay attacks.

2020-12-02
Mukaidani, H., Saravanakumar, R., Xu, H., Zhuang, W..  2019.  Robust Nash Static Output Feedback Strategy for Uncertain Markov Jump Delay Stochastic Systems. 2019 IEEE 58th Conference on Decision and Control (CDC). :5826—5831.

In this paper, we propose a robust Nash strategy for a class of uncertain Markov jump delay stochastic systems (UMJDSSs) via static output feedback (SOF). After establishing the extended bounded real lemma for UMJDSS, the conditions for the existence of a robust Nash strategy set are determined by means of cross coupled stochastic matrix inequalities (CCSMIs). In order to solve the SOF problem, an heuristic algorithm is developed based on the algebraic equations and the linear matrix inequalities (LMIs). In particular, it is shown that robust convergence is guaranteed under a new convergence condition. Finally, a practical numerical example based on the congestion control for active queue management is provided to demonstrate the reliability and usefulness of the proposed design scheme.

2020-05-18
Gou, Linfeng, Zhou, Zihan, Liang, Aixia, Wang, Lulu, Liu, Zhidan.  2018.  Dynamic Threshold Design Based on Kalman Filter in Multiple Fault Diagnosis. 2018 37th Chinese Control Conference (CCC). :6105–6109.
The choice of threshold is an important part of fault diagnosis. Most of the current methods use a constant threshold for detection and it is difficult to meet the robustness and sensitivity requirements of the diagnosis system. This article develops a dynamic threshold algorithm for aircraft engine fault detection and isolation systems. The algorithm firstly analyzes the bounded norm uncertainty that may appear in the process of model based on the state space equation, and gives the time domain response range calculation formula under the influence of uncertain parameters; then the Kalman filter is combined to calculate the threshold with the real-time change of state; the simulation is performed at the end. The simulation results show that dynamic threshold range changes with status in real time.
2020-04-24
Bellec, Q., le Claire, J.C., Benkhoris, M.F., Coulibaly, P..  2019.  Investigation of time delay effects on the current in a power converter regulated by Phase-Shift Self-Oscillating Current Controller. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe). :P.1–P.10.

This paper deals with effects of current sensor bandwidth and time delays in a system controlled by a Phase-Shift Self-Oscillating Current Controller (PSSOCC). The robustness of this current controller has been proved in former works showing its good performances in a large range of applications including AC/DC and DC/AC converters, power factor correction, active filters, isolation amplifiers and motor control. As switching frequencies can be upper than 30kHz, time delays and bandwidth limitations cannot be neglected in comparison with former works on this robust current controller. Thus, several models are proposed in this paper to analyze system behaviours. Those models permit to find analytical expressions binding maximum oscillation frequency with time delay and/or additional filter parameters. Through current spectrums analysis, quality of analytical expressions is proved for each model presented in this work. An experimental approach shows that every element of the electronic board having a low-pass effect or delaying command signals need to be included in the model in order to have a perfect match between calculations, simulations and practical results.

2020-01-13
Shen, Yitong, Wang, Lingfeng, Lau, Jim Pikkin, Liu, Zhaoxi.  2019.  A Robust Control Architecture for Mitigating Sensor and Actuator Attacks on PV Converter. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). :970–975.
The cybersecurity of the modern control system is becoming a critical issue to the cyber-physical systems (CPS). Mitigating potential cyberattacks in the control system is an important concern in the controller design to enhance the resilience of the overall system. This paper presents a novel robust control architecture for the PV converter system to mitigate the sensor and actuator attack and reduce the influence of the system uncertainty. The sensor and actuator attack is a vicious attack scenario when the attack signals are injected into the sensor and actuator in a CPS simultaneously. A p-synthesis robust control architecture is proposed to mitigate the sensor and actuator attack and limit the system uncertainty perturbations in a DC-DC photovoltaic (PV) converter. A new system state matrix and control architecture is presented by integrating the original system state, injected attack signals and system uncertainty perturbations. In the case study, the proposed μ-synthesis robust controller exhibits a robust performance in the face of the sensor and actuator attack.
2019-02-21
Vaishnav, J., Uday, A. B., Poulose, T..  2018.  Pattern Formation in Swarm Robotic Systems. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1466–1469.
Swarm robotics, a combination of Swarm intelligence and robotics, is inspired from how the nature swarms, such as flock of birds, swarm of bees, ants, fishes etc. These group behaviours show great flexibility and robustness which enable the robots to perform various tasks like pattern formation, rescue and military operation, space expedition etc. This paper discusses an algorithm for forming patterns, which are English alphabets, by identical robots, in a finite amount of time and also analyses outcome of the algorithm. In order to implement the algorithm, 9 identical circular robots of diameter 15 cm are used, each having a Node MCU module and a rotary encoder attached to one wheel of the robot. The robots are initially placed at the centres of an imaginary 3×3 grid, on a white sheet of paper, of dimensions 250cm × 250 cm. All the robots are connected to the laptop's network via wifi and data send from the laptop is received by the Node MCU modules. This data includes the distance to be moved and the angle to be turned by each robot in order to form the letter. The rotary encoders enable the robot to move specific distances and turn specific angles, with high accuracy, by real time feedback. The algorithm is written in Python and image processing is done using OpenCV. Certain approximations are used in order to implement collision avoidance. Finally after calibration, the word given as input, is formed letter by letter, using these 9 identical robots.
2017-03-08
Poveda, J. I., Teel, A. R..  2015.  Event-triggered based on-line optimization for a class of nonlinear systems. 2015 54th IEEE Conference on Decision and Control (CDC). :5474–5479.

We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.

2015-05-06
Pajic, M., Weimer, J., Bezzo, N., Tabuada, P., Sokolsky, O., Insup Lee, Pappas, G.J..  2014.  Robustness of attack-resilient state estimators. Cyber-Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on. :163-174.

The interaction between information technology and phys ical world makes Cyber-Physical Systems (CPS) vulnerable to malicious attacks beyond the standard cyber attacks. This has motivated the need for attack-resilient state estimation. Yet, the existing state-estimators are based on the non-realistic assumption that the exact system model is known. Consequently, in this work we present a method for state estimation in presence of attacks, for systems with noise and modeling errors. When the the estimated states are used by a state-based feedback controller, we show that the attacker cannot destabilize the system by exploiting the difference between the model used for the state estimation and the real physical dynamics of the system. Furthermore, we describe how implementation issues such as jitter, latency and synchronization errors can be mapped into parameters of the state estimation procedure that describe modeling errors, and provide a bound on the state-estimation error caused by modeling errors. This enables mapping control performance requirements into real-time (i.e., timing related) specifications imposed on the underlying platform. Finally, we illustrate and experimentally evaluate this approach on an unmanned ground vehicle case-study.
 

2015-04-30
Li Yumei, Voos, H., Darouach, M..  2014.  Robust H #x221E; cyber-attacks estimation for control systems. Control Conference (CCC), 2014 33rd Chinese. :3124-3129.

This paper deals with the robust H∞ cyber-attacks estimation problem for control systems under stochastic cyber-attacks and disturbances. The focus is on designing a H∞ filter which maximize the attack sensitivity and minimize the effect of disturbances. The design requires not only the disturbance attenuation, but also the residual to remain the attack sensitivity as much as possible while the effect of disturbance is minimized. A stochastic model of control system with stochastic cyber-attacks which satisfy the Markovian stochastic process is constructed. And we also present the stochastic attack models that a control system is possibly exposed to. Furthermore, applying H∞ filtering technique-based on linear matrix inequalities (LMIs), the paper obtains sufficient conditions that ensure the filtering error dynamic is asymptotically stable and satisfies a prescribed ratio between cyber-attack sensitivity and disturbance sensitivity. Finally, the results are applied to the control of a Quadruple-tank process (QTP) under a stochastic cyber-attack and a stochastic disturbance. The simulation results underline that the designed filters is effective and feasible in practical application.