Biblio
With the recent boom in the cryptocurrency market, hackers have been on the lookout to find novel ways of commandeering users' machine for covert and stealthy mining operations. In an attempt to expose such under-the-hood practices, this paper explores the issue of browser cryptojacking, whereby miners are secretly deployed inside browser code without the knowledge of the user. To this end, we analyze the top 50k websites from Alexa and find a noticeable percentage of sites that are indulging in this exploitative exercise often using heavily obfuscated code. Furthermore, mining prevention plug-ins, such as NoMiner, fail to flag such cleverly concealed instances. Hence, we propose a machine learning solution based on hardware-assisted profiling of browser code in real-time. A fine-grained micro-architectural footprint allows us to classify mining applications with \textbackslashtextgreater99% accuracy and even flags them if the mining code has been heavily obfuscated or encrypted. We build our own browser extension and show that it outperforms other plug-ins. The proposed design has negligible overhead on the user's machine and works for all standard off-the-shelf CPUs.
Browser extensions are a way through which third party developers provide a set of additional functionalities on top of the traditional functionalities provided by a browser. It has been identified that the browser extension platform can be used by hackers to carry out attacks of sophisticated kinds. These attacks include phishing, spying, DDoS, email spamming, affiliate fraud, mal-advertising, payment frauds etc. In this paper, we showcase the vulnerability of the current browsers to these attacks by taking Google Chrome as the case study as it is a popular browser. The paper also discusses the technical reason which makes it possible for the attackers to launch such attacks via browser extensions. A set of suggestions and solutions that can thwart the attack possibilities has been discussed.