Visible to the public Biblio

Filters: Keyword is AES-256  [Clear All Filters]
2021-05-26
Gayatri, R, Gayatri, Yendamury, Mitra, CP, Mekala, S, Priyatharishini, M.  2020.  System Level Hardware Trojan Detection Using Side-Channel Power Analysis and Machine Learning. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :650—654.

Cyber physical systems (CPS) is a dominant technology in today's world due to its vast variety of applications. But in recent times, the alarmingly increasing breach of privacy and security in CPS is a matter of grave concern. Security and trust of CPS has become the need of the hour. Hardware Trojans are one such a malicious attack which compromises on the security of the CPS by changing its functionality or denial of services or leaking important information. This paper proposes the detection of Hardware Trojans at the system level in AES-256 decryption algorithm implemented in Atmel XMega Controller (Target Board) using a combination of side-channel power analysis and machine learning. Power analysis is done with help of ChipWhisperer-Lite board. The power traces of the golden algorithm (Hardware Trojan free) and Hardware Trojan infected algorithms are obtained and used to train the machine learning model using the 80/20 rule. The proposed machine learning model obtained an accuracy of 97%-100% for all the Trojans inserted.

2021-02-08
Moussa, Y., Alexan, W..  2020.  Message Security Through AES and LSB Embedding in Edge Detected Pixels of 3D Images. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :224—229.

This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.

2017-04-20
Srinivas, N. S. S., Akramuddin, M..  2016.  FPGA based hardware implementation of AES Rijndael algorithm for Encryption and Decryption. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). :1769–1776.
AES algorithm or Rijndael algorithm is a network security algorithm which is most commonly used in all types of wired and wireless digital communication networks for secure transmission of data between two end users, especially over a public network. This paper presents the hardware implementation of AES Rijndael Encryption and Decryption Algorithm by using Xilinx Virtex-7 FPGA. The hardware design approach is entirely based on pre-calculated look-up tables (LUTs) which results in less complex architecture, thereby providing high throughput and low latency. There are basically three different formats in AES. They are AES-128, AES-192 and AES-256. The encryption and decryption blocks of all the three formats are efficiently designed by using Verilog-HDL and are synthesized on Virtex-7 XC7VX690T chip (Target Device) with the help of Xilinx ISE Design Suite-14.7 Tool. The synthesis tool was set to optimize speed, area and power. The power analysis is made by using Xilinx XPower Analyzer. Pre-calculated LUTs are used for the implementation of algorithmic functions, namely S-Box and Inverse S-Box transformations and also for GF (28) i.e. Galois Field Multiplications involved in Mix-Columns and Inverse Mix-Columns transformations. The proposed architecture is found to be having good efficiency in terms of latency, throughput, speed/delay, area and power.