Visible to the public Biblio

Filters: Keyword is analogue circuits  [Clear All Filters]
2018-02-15
Dong, H., Ma, T., He, B., Zheng, J., Liu, G..  2017.  Multiple-fault diagnosis of analog circuit with fault tolerance. 2017 6th Data Driven Control and Learning Systems (DDCLS). :292–296.

A novel method, consisting of fault detection, rough set generation, element isolation and parameter estimation is presented for multiple-fault diagnosis on analog circuit with tolerance. Firstly, a linear-programming concept is developed to transform fault detection of circuit with limited accessible terminals into measurement to check existence of a feasible solution under tolerance constraints. Secondly, fault characteristic equation is deduced to generate a fault rough set. It is proved that the node voltages of nominal circuit can be used in fault characteristic equation with fault tolerance. Lastly, fault detection of circuit with revised deviation restriction for suspected fault elements is proceeded to locate faulty elements and estimate their parameters. The diagnosis accuracy and parameter identification precision of the method are verified by simulation results.

Filaretov, V., Kurganov, S., Gorshkov, K..  2017.  Multiple fault diagnosis in analog circuits using the indirect compensation theorem. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–6.

A method for the multiple faults diagnosis in linear analog circuits is presented in this paper. The proposed approach is based upon the concept named by the indirect compensation theorem. This theorem is reducing the procedure of fault diagnosis in the analog circuit to the symbolic analysis process. An extension of the indirect compensation theorem for the linear subcircuit is proposed. The indirect compensation provides equivalent replacement of the n-ports subcircuit by n norators and n fixators of voltages and currents. The proposed multiple faults diagnosis techniques can be used for evaluation of any kind of terminal characteristics of the two-port network. For calculation of the circuit determinant expressions, the Generalized Parameter Extraction Method is implemented. The main advantage of the analysis method is that it is cancellation free. It requires neither matrix nor ordinary graph description of the circuit. The process of symbolic circuit analysis is automated by the freeware computer program Cirsym which can be used online. The experimental results are presented to show the efficiency and reliability of the proposed technique.

2017-04-20
Takalo, H., Ahmadi, A., Mirhassani, M., Ahmadi, M..  2016.  Analog cellular neural network for application in physical unclonable functions. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2635–2638.
In this paper an analog cellular neural network is proposed with application in physical unclonable function design. Dynamical behavior of the circuit and its high sensitivity to the process variation can be exploited in a challenge-response security system. The proposed circuit can be used as unclonable core module in the secure systems for applications such as device identification/authentication and secret key generation. The proposed circuit is designed and simulated in 45-nm bulk CMOS technology. Monte Carlo simulation for this circuit, results in unpolarized Gaussian-shaped distribution for Hamming Distance between 4005 100-bit PUF instances.