Visible to the public Biblio

Filters: Keyword is Deep Packet Inspection (DPI)  [Clear All Filters]
2022-04-25
Mahendra, Lagineni, Kumar, R.K. Senthil, Hareesh, Reddi, Bindhumadhava, B.S., Kalluri, Rajesh.  2021.  Deep Security Scanner for Industrial Control Systems. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). :447–452.

with the continuous growing threat of cyber terrorism, the vulnerability of the industrial control systems (ICS) is the most common subject for security researchers now. Attacks on ICS systems keep increasing and their impact leads to human safety issues, equipment damage, system down, unusual output, loss of visibility and control, and various other catastrophic failures. Many of the industrial control systems are relatively insecure with chronic and pervasive vulnerabilities. Modbus-Tcpis one of the widely used communication protocols in the ICS/ Supervisory control and data acquisition (SCADA) system to transmit signals from instrumentation and control devices to the main controller of the control center. Modbus is a plain text protocol without any built-in security mechanisms, and Modbus is a standard communication protocol, widely used in critical infrastructure applications such as power systems, water, oil & gas, etc.. This paper proposes a passive security solution called Deep-security-scanner (DSS) tailored to Modbus-Tcpcommunication based Industrial control system (ICS). DSS solution detects attacks on Modbus-TcpIcs networks in a passive manner without disturbing the availability requirements of the system.

2020-07-03
Yamauchi, Hiroaki, Nakao, Akihiro, Oguchi, Masato, Yamamoto, Shu, Yamaguchi, Saneyasu.  2019.  A Study on Service Identification Based on Server Name Indication Analysis. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :470—474.

Identifying services constituting traffic from given IP network flows is essential to various applications, such as the management of quality of service (QoS) and the prevention of security issues. Typical methods for achieving this objective include identifications based on IP addresses and port numbers. However, such methods are not sufficiently accurate and require improvement. Deep Packet Inspection (DPI) is one of the most promising methods for improving the accuracy of identification. In addition, many current IP flows are encrypted using Transport Layer Security (TLS). Hence, it is necessary for identification methods to analyze flows encrypted by TLS. For that reason, a service identification method based on DPI and n-gram that focuses only on the non-encrypted parts in the TLS session establishment was proposed. However, there is room for improvement in identification accuracy because this method analyzes all the non-encrypted parts including Random Values without protocol analyses. In this paper, we propose a method for identifying the service from given IP flows based on analysis of Server Name Indication (SNI). The proposed method clusters flow according to the value of SNI and identify services from the occurrences of all clusters. Our evaluations, which involve identifications of services on Google and Yahoo sites, demonstrate that the proposed method can identify services more accurately than the existing method.

2017-05-16
Lacroix, Alexsandre B., Langlois, J.M. Pierre, Boyer, François-Raymond, Gosselin, Antoine, Bois, Guy.  2016.  Node Configuration for the Aho-Corasick Algorithm in Intrusion Detection Systems. Proceedings of the 2016 Symposium on Architectures for Networking and Communications Systems. :121–122.

In this paper, we analyze the performance and cost trade-off from selecting two representations of nodes when implementing the Aho-Corasick algorithm. This algorithm can be used for pattern matching in network-based intrusion detection systems such as Snort. Our analysis uses the Snort 2.9.7 rules set, which contains almost 26k patterns. Our methodology consists of code profiling and analysis, followed by the selection of a parameter to maximize a metric that combines clock cycles count and memory usage. The parameter determines which of two types of nodes is selected for each trie node. We show that it is possible to select the parameter to optimize the metric, which results in an improvement by up to 12× compared with the single node-type case.

2017-04-20
Wakchaure, M., Sarwade, S., Siddavatam, I..  2016.  Reconnaissance of Industrial Control System by deep packet inspection. 2016 IEEE International Conference on Engineering and Technology (ICETECH). :1093–1096.

Industrial Control System (ICS) consists of large number of electronic devices connected to field devices to execute the physical processes. Communication network of ICS supports wide range of packet based applications. A growing issue with network security and its impact on ICS have highlighted some fundamental risks to critical infrastructure. To address network security issues for ICS a clear understanding of security specific defensive countermeasures is required. Reconnaissance of ICS network by deep packet inspection (DPI) consists analysis of the contents of the captured packets in order to get accurate measures of process that uses specific countermeasure to create an aggregated posture. In this paper we focus on novel approach by presenting a technique with captured network traffic. This technique is capable to identify the protocols and extract different features for classification of traffic based on network protocol, header information and payload to understand the whole architecture of complex system. Here we have segregated possible types of attacks on ICS.