Biblio
Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.
We have been investigating methods for establishing an effective, immediate defense mechanism against the DDoS attacks on Web applications via hacker botnets, in which this defense mechanism can be immediately active without preparation time, e.g. for training data, usually asked for in existing proposals. In this study, we propose a new mechanism, including new data structures and algorithms, that allow the detection and filtering of large amounts of attack packets (Web request) based on monitoring and capturing the suspect groups of source IPs that can be sending packets at similar patterns, i.e. with very high and similar frequencies. The proposed algorithm places great emphasis on reducing storage space and processing time so it is promising to be effective in real-time attack response.
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.
Software-Defined Network's (SDN) core working depends on the centralized controller which implements the control plane. With the help of this controller, security threats like Distributed Denial of Service (DDoS) attacks can be identified easily. A DDoS attack is usually instigated on servers by sending a huge amount of unwanted traffic that exhausts its resources, denying their services to genuine users. Earlier research work has been carried out to mitigate DDoS attacks at the switch and the host level. Mitigation at switch level involves identifying the switch which sends a lot of unwanted traffic in the network and blocking it from the network. But this solution is not feasible as it will also block genuine hosts connected to that switch. Later mitigation at the host level was introduced wherein the compromised hosts were identified and blocked thereby allowing genuine hosts to send their traffic in the network. Though this solution is feasible, it will block the traffic from the genuine applications of the compromised host as well. In this paper, we propose a new way to identify and mitigate the DDoS attack at the application level so that only the application generating the DDoS traffic is blocked and other genuine applications are allowed to send traffic in the network normally.
DDoS attacks are a significant threat to internet service or infrastructure providers. This poster presents an FPGA-accelerated device and DDoS mitigation technique to overcome such attacks. Our work addresses amplification attacks whose goal is to generate enough traffic to saturate the victims links. The main idea of the device is to efficiently filter malicious traffic at high-speeds directly in the backbone infrastructure before it even reaches the victim's network. We implemented our solution for two FPGA platforms using the high-level description in P4, and we report on its performance in terms of throughput and hardware resources.
Recently Distributed Denial-of-Service (DDoS) are becoming more and more sophisticated, which makes the existing defence systems not capable of tolerating by themselves against wide-ranging attacks. Thus, collaborative protection mitigation has become a needed alternative to extend defence mechanisms. However, the existing coordinated DDoS mitigation approaches either they require a complex configuration or are highly-priced. Blockchain technology offers a solution that reduces the complexity of signalling DDoS system, as well as a platform where many autonomous systems (Ass) can share hardware resources and defence capabilities for an effective DDoS defence. In this work, we also used a Deep learning DDoS detection system; we identify individual DDoS attack class and also define whether the incoming traffic is legitimate or attack. By classifying the attack traffic flow separately, our proposed mitigation technique could deny only the specific traffic causing the attack, instead of blocking all the traffic coming towards the victim(s).