Biblio
This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.
The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.
Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.
Wireless Sensor Networks (WSN) are widely used to monitor and control physical environments. An efficient energy management system is needed to be able to deploy these networks in lossy environments while maintaining reliable communication. The IPv6 Routing Protocol for Low-Power and Lossy networks is a routing protocol designed to properly manage energy without compromising reliability. This protocol has currently been implemented in Contiki OS, TinyOS, and OMNeT++ Castalia. But these applications also simulate all operation mechanics of a specified hardware model instead of just simulating the protocol only, thus adding unnecessary overhead and slowing down simulations on RPL. In light of this, we have implemented a working ns-3 implementation of RPL with support for multiple RPL instances with the use of a global repair mechanism. The behavior and output of our simulator was compared to Cooja for verification, and the results are similar with a minor difference in rank computation.
In Sybil attacks, a physical adversary takes multiple fabricated or stolen identities to maliciously manipulate the network. These attacks are very harmful for Internet of Things (IoT) applications. In this paper we implemented and evaluated the performance of RPL (Routing Protocol for Low-Power and Lossy Networks) routing protocol under mobile sybil attacks, namely SybM, with respect to control overhead, packet delivery and energy consumption. In SybM attacks, Sybil nodes take the advantage of their mobility and the weakness of RPL to handle identity and mobility, to flood the network with fake control messages from different locations. To counter these type of attacks we propose a trust-based intrusion detection system based on RPL.
Establishing trust relationships between routing nodes represents a vital security requirement to establish reliable routing processes that exclude infected or selfish nodes. In this paper, we propose a new security scheme for the Internet of things and mainly for the RPL (Routing Protocol for Low-power and Lossy Networks) called: Metric-based RPL Trustworthiness Scheme (MRTS). The primary aim is to enhance RPL security and deal with the trust inference problem. MRTS addresses trust issue during the construction and maintenance of routing paths from each node to the BR (Border Router). To handle this issue, we extend DIO (DODAG Information Object) message by introducing a new trust-based metric ERNT (Extended RPL Node Trustworthiness) and a new Objective Function TOF (Trust Objective Function). In fact, ERNT represents the trust values for each node within the network, and TOF demonstrates how ERNT is mapped to path cost. In MRTS all nodes collaborate to calculate ERNT by taking into account nodes' behavior including selfishness, energy, and honesty components. We implemented our scheme by extending the distributed Bellman-Ford algorithm. Evaluation results demonstrated that the new scheme improves the security of RPL.
Internet of Things (IoT) is characterized by heterogeneous devices that interact with each other on a collaborative basis to fulfill a common goal. In this scenario, some of the deployed devices are expected to be constrained in terms of memory usage, power consumption and processing resources. To address the specific properties and constraints of such networks, a complete stack of standardized protocols has been developed, among them the Routing Protocol for Low-Power and lossy networks (RPL). However, this protocol is exposed to a large variety of attacks from the inside of the network itself. To fill this gap, this paper focuses on the design and the integration of a novel Link reliable and Trust aware model into the RPL protocol. Our approach aims to ensure Trust among entities and to provide QoS guarantees during the construction and the maintenance of the network routing topology. Our model targets both node and link Trust and follows a multidimensional approach to enable an accurate Trust value computation for IoT entities. To prove the efficiency of our proposal, this last has been implemented and tested successfully within an IoT environment. Therefore, a set of experiments has been made to show the high accuracy level of our system.
Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks (WSNs) due to its ability to transmit IPv6 packet with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by its routing protocol for low-power and lossy network (RPL). RPL components include WSN nodes that have constrained resources. Therefore, the exposure of RPL to various attacks may lead to network damage. A sinkhole attack is a routing attack that could affect the network topology. This paper aims to investigate the existing detection mechanisms used in detecting sinkhole attack on RPL-based networks. This work categorizes and presents each mechanism according to certain aspects. Then, their advantages and drawbacks with regard to resource consumption and false positive rate are discussed and compared.
6L0WPAN is a communication protocol for Internet of Things. 6LoWPAN is IPv6 protocol modified for low power and lossy personal area networks. 6LoWPAN inherits threats from its predecessors IPv4 and IPv6. IP spoofing is a known attack prevalent in IPv4 and IPv6 networks but there are new vulnerabilities which creates new paths, leading to the attack. This study performs the experimental study to check the feasibility of performing IP spoofing attack on 6LoWPAN Network. Intruder misuses 6LoWPAN control messages which results into wrong IPv6-MAC binding in router. Attack is also simulated in cooja simulator. Simulated results are analyzed for finding cost to the attacker in terms of energy and memory consumption.
In this article, we describe a neighbour disjoint multipath (NDM) scheme that is shown to be more resilient amidst node or link failures compared to the two well-known node disjoint and edge disjoint multipath techniques. A centralised NDM was first conceptualised in our initial published work utilising the spatial diversity among multiple paths to ensure robustness against localised poor channel quality or node failures. Here, we further introduce a distributed version of our NDM algorithm adapting to the low-power and lossy network (LLN) characteristics. We implement our distributed NDM algorithm in Contiki OS on top of LOADng—a lightweight On-demand Ad hoc Distance Vector Routing protocol. We compare this implementation's performance with a standard IPv6 Routing Protocol for Low power and Lossy Networks (RPL), and also with basic LOADng, running in the Cooja simulator. Standard performance metrics such as packet delivery ratio, end-to-end latency, overhead and average routing table size are identified for the comparison. The results and observations are provided considering a few different application traffic patterns, which serve to quantify the improvements in robustness arising from NDM. The results are confirmed by experiments using a public sensor network testbed with over 100 nodes.
In IoT (Internet of Things) networks, RPL (IPv6 Routing protocol for Low Power and Lossy Networks) is preferred for reducing routing overhead. In RPL, a node selects one parent node which includes the lowest routing metric among its neighbors and the other neighbors are stored as immediate successors. If the selected parent node is lost, the node selects a new parent node among the immediate successors. However, if the new path also includes the same intermediate node which is lost in previous path, it also fails to transmit upward packets. This procedure might be repeated until the new path is selected which does not include the lost immediate node. In this paper, we therefore propose a new path recovery method to reduce the unnecessary repetition for upward path recovery. When a node receives routing message, it calculates the hash value and sets 1 to a new field in the routing message. Based on the field, the node estimates an approximate number of ancestors that are shared between each paths. When loss of upward path is detected, the node selects a new path according to both approximate number and the routing metric. Therefore, a new path which dose not include same ancestors with the previous path is selected and data packet can be resumed immediately.
Standard routing protocols for IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) are mainly designed for data collection applications and work by establishing a tree-based network topology, which enables packets to be sent upwards, from the leaves to the root, adapting to dynamics of low-power communication links. The routing tables in such unidirectional networks are very simple and small since each node just needs to maintain the address of its parent in the tree, providing the best-quality route at every moment. In this work, we propose Matrix, a platform-independent routing protocol that utilizes the existing tree structure of the network to enable reliable and efficient any-to-any data traffic. Matrix uses hierarchical IPv6 address assignment in order to optimize routing table size, while preserving bidirectional routing. Moreover, it uses a local broadcast mechanism to forward messages to the right subtree when persistent node or link failures occur. We implemented Matrix on TinyOS and evaluated its performance both analytically and through simulations on TOSSIM. Our results show that the proposed protocol is superior to available protocols for 6LoWPAN, when it comes to any-to-any data communication, in terms of reliability, message efficiency, and memory footprint.
Internet Engineering Task Force (IETF) is working on 6LoW-PAN standard which allows smart devices to be connected to Internet using large address space of IPV6. 6LoWPAN acts as a bridge between resource constrained devices and the Internet. The entire IoT space is vulnerable to local threats as well as the threats from the Internet. Due to the random deployment of the network nodes and the absence of tamper resistant shield, the resource constrained IoT elements face potential insider attacks even in presence of front line defense mechanism that involved cryptographic protocols. To detect such insidious nodes, an Intrusion Detection System (IDS) is required as a second line of defense. In this paper, we attempt to analyze such potential insider attacks, while reviewing the IDS based countermeasures. We attempt to propose a baseline for designing IDS for 6LoWPAN based IoT system.