Visible to the public Biblio

Filters: Keyword is RPL  [Clear All Filters]
2023-01-05
Kim, Jae-Dong, Ko, Minseok, Chung, Jong-Moon.  2022.  Novel Analytical Models for Sybil Attack Detection in IPv6-based RPL Wireless IoT Networks. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1–3.
Metaverse technologies depend on various advanced human-computer interaction (HCI) devices to be supported by extended reality (XR) technology. Many new HCI devices are supported by wireless Internet of Things (IoT) networks, where a reliable routing scheme is essential for seamless data trans-mission. Routing Protocol for Low power and Lossy networks (RPL) is a key routing technology used in IPv6-based low power and lossy networks (LLNs). However, in the networks that are configured, such as small wireless devices applying the IEEE 802.15.4 standards, due to the lack of a system that manages the identity (ID) at the center, the maliciously compromised nodes can make fabricated IDs and pretend to be a legitimate node. This behavior is called Sybil attack, which is very difficult to respond to since attackers use multiple fabricated IDs which are legally disguised. In this paper, Sybil attack countermeasures on RPL-based networks published in recent studies are compared and limitations are analyzed through simulation performance analysis.
2022-12-06
Koosha, Mohammad, Farzaneh, Behnam, Farzaneh, Shahin.  2022.  A Classification of RPL Specific Attacks and Countermeasures in the Internet of Things. 2022 Sixth International Conference on Smart Cities, Internet of Things and Applications (SCIoT). :1-7.

Although 6LoWPAN has brought about a revolutionary leap in networking for Low-power Lossy Networks, challenges still exist, including security concerns that are yet to answer. The most common type of attack on 6LoWPANs is the network layer, especially routing attacks, since the very members of a 6LoWPAN network have to carry out packet forwarding for the whole network. According to the initial purpose of IoT, these nodes are expected to be resource-deficient electronic devices with an utterly stochastic time pattern of attachment or detachment from a network. This issue makes preserving their authenticity or identifying their malignity hard, if not impossible. Since 6LoWPAN is a successor and a hybrid of previously developed wireless technologies, it is inherently prone to cyber-attacks shared with its predecessors, especially Wireless Sensor Networks (WSNs) and WPANs. On the other hand, multiple attacks have been uniquely developed for 6LoWPANs due to the unique design of the network layer protocol of 6LoWPANs known as RPL. While there exist publications about attacks on 6LoWPANs, a comprehensive survey exclusively on RPL-specific attacks is felt missing to bold the discrimination between the RPL-specific and non-specific attacks. Hence, the urge behind this paper is to gather all known attacks unique to RPL in a single volume.

Hkiri, Amal, Karmani, Mouna, Machhout, Mohsen.  2022.  The Routing Protocol for low power and lossy networks (RPL) under Attack: Simulation and Analysis. 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). :143-148.

Routing protocol for low power and lossy networks (RPL) is the underlying routing protocol of 6LoWPAN, a core communication standard for the Internet of Things. In terms of quality of service (QoS), device management, and energy efficiency, RPL beats competing wireless sensor and ad hoc routing protocols. However, several attacks could threaten the network due to the problem of unauthenticated or unencrypted control frames, centralized root controllers, compromised or unauthenticated devices. Thus, in this paper, we aim to investigate the effect of topology and Resources attacks on RPL.s efficiency. The Hello Flooding attack, Increase Number attack and Decrease Rank attack are the three forms of Resources attacks and Topology attacks respectively chosen to work on. The simulations were done to understand the impact of the three different attacks on RPL performances metrics including End-to-End Delay (E2ED), throughput, Packet Delivery Ratio (PDR) and average power consumption. The findings show that the three attacks increased the E2ED, decreased the PDR and the network throughput, and degrades the network’, which further raises the power consumption of the network nodes.

Verma, Sachin Kumar, Verma, Abhishek, Pandey, Avinash Chandra.  2022.  Addressing DAO Insider Attacks in IPv6-Based Low-Power and Lossy Networks. 2022 IEEE Region 10 Symposium (TENSYMP). :1-6.

Low-Power and Lossy Networks (LLNs) run on resource-constrained devices and play a key role in many Industrial Internet of Things and Cyber-Physical Systems based applications. But, achieving an energy-efficient routing in LLNs is a major challenge nowadays. This challenge is addressed by Routing Protocol for Low-power Lossy Networks (RPL), which is specified in RFC 6550 as a “Proposed Standard” at present. In RPL, a client node uses Destination Advertisement Object (DAO) control messages to pass on the destination information towards the root node. An attacker may exploit the DAO sending mechanism of RPL to perform a DAO Insider attack in LLNs. In this paper, it is shown that an aggressive attacker can drastically degrade the network performance. To address DAO Insider attack, a lightweight defense solution is proposed. The proposed solution uses an early blacklisting strategy to significantly mitigate the attack and restore RPL performance. The proposed solution is implemented and tested on Cooja Simulator.

Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Study of RPL Attacks and Defense Mechanisms in the Internet of Things Network. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1-6.

The Internet of Things (IoT) is a technology that has evolved to make day-to-day life faster and easier. But with the increase in the number of users, the IoT network is prone to various security and privacy issues. And most of these issues/attacks occur during the routing of the data in the IoT network. Therefore, for secure routing among resource-constrained nodes of IoT, the RPL protocol has been standardized by IETF. But the RPL protocol is also vulnerable to attacks based on resources, topology formation and traffic flow between nodes. The attacks like DoS, Blackhole, eavesdropping, flood attacks and so on cannot be efficiently defended using RPL protocol for routing data in IoT networks. So, defense mechanisms are used to protect networks from routing attacks. And are classified into Secure Routing Protocols (SRPs) and Intrusion Detection systems (IDs). This paper gives an overview of the RPL attacks and the defense mechanisms used to detect or mitigate the RPL routing attacks in IoT networks.

Rani, Jyoti, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Detailed Review of the IoT with Detection of Sinkhole Attacks in RPL based network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things” (IoT) is internetworking of physical devices known as 'things', algorithms, equipment and techniques that allow communication with another device, equipment and software over the network. And with the advancement in data communication, every device must be connected via the Internet. For this purpose, we use resource-constrained sensor nodes for collecting data from homes, offices, hospitals, industries and data centers. But various vulnerabilities may ruin the functioning of the sensor nodes. Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized, secure routing protocol designed for the 6LoWPAN IoT network. It's a proactive routing protocol that works on the destination-oriented topology to perform safe routing. The Sinkhole is a networking attack that destroys the topology of the RPL protocol as the attacker node changes the route of all the traffic in the IoT network. In this paper, we have given a survey of Sinkhole attacks in IoT and proposed different methods for preventing and detecting these attacks in a low-power-based IoT network.

Nisha, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Review of DIS-Flooding Attacks in RPL based IoT Network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things (IoT)” is a term that describes physical sensors, processing software, power and other technologies to connect or interchange information between systems and devices through the Internet and other forms of communication. RPL protocol can efficiently establish network routes, communicate routing information, and adjust the topology. The 6LoWPAN concept was born out of the belief that IP should protect even the tiniest devices, and for low-power devices, minimal computational capabilities should be permitted to join IoT. The DIS-Flooding against RPL-based IoT with its mitigation techniques are discussed in this paper.

Aneja, Sakshi, Mittal, Sumit, Sharma, Dhirendra.  2022.  An Optimized Mobility Management Framework for Routing Protocol Lossy Networks using Optimization Algorithm. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-8.

As a large number of sensor nodes as well as limited resources such as energy, memory, computing power, as well as bandwidth. Lossy linkages connect these nodes together. In early 2008,IETF working group looked into using current routing protocols for LLNs. Routing Over minimum power and Lossy networksROLL standardizes an IPv6 routing solution for LLNs because of the importance of LLNs in IoT.IPv6 Routing Protocol is based on the 6LoWPAN standard. RPL has matured significantly. The research community is becoming increasingly interested in it. The topology of RPL can be built in a variety of ways. It creates a topology in advance. Due to the lack of a complete review of RPL, in this paper a mobility management framework has been proposed along with experimental evaluation by applying parameters likePacket Delivery Ratio, throughput, end to end delay, consumed energy on the basis of the various parameters and its analysis done accurately. Finally, this paper can help academics better understand the RPL and engage in future research projects to improve it.

2022-04-01
Muzammal, Syeda Mariam, Murugesan, Raja Kumar, Jhanjhi, NZ.  2021.  Introducing Mobility Metrics in Trust-based Security of Routing Protocol for Internet of Things. 2021 National Computing Colleges Conference (NCCC). :1—5.

Internet of Things (IoT) is flourishing in several application areas, such as smart cities, smart factories, smart homes, smart healthcare, etc. With the adoption of IoT in critical scenarios, it is crucial to investigate its security aspects. All the layers of IoT are vulnerable to severely disruptive attacks. However, the attacks in IoT Network layer have a high impact on communication between the connected objects. Routing in most of the IoT networks is carried out by IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). RPL-based IoT offers limited protection against routing attacks. A trust-based approach for routing security is suitable to be integrated with IoT systems due to the resource-constrained nature of devices. This research proposes a trust-based secure routing protocol to provide security against packet dropping attacks in RPL-based IoT networks. IoT networks are dynamic and consist of both static and mobile nodes. Hence the chosen trust metrics in the proposed method also include the mobility-based metrics for trust evaluation. The proposed solution is integrated into RPL as a modified objective function, and the results are compared with the default RPL objective function, MRHOF. The analysis and evaluation of the proposed protocol indicate its efficacy and adaptability in a mobile IoT environment.

2021-11-29
AlShiab, Ismael, Leivadeas, Aris, Ibnkahla, Mohamed.  2021.  Virtual Sensing Networks and Dynamic RPL-Based Routing for IoT Sensing Services. ICC 2021 - IEEE International Conference on Communications. :1–6.
IoT applications are quickly evolving in scope and objectives while their focus is being shifted toward supporting dynamic users’ requirements. IoT users initiate applications and expect quick and reliable deployment without worrying about the underlying complexities of the required sensing and routing resources. On the other hand, IoT sensing nodes, sinks, and gateways are heterogeneous, have limited resources, and require significant cost and installation time. Sensing network-level virtualization through virtual Sensing Networks (VSNs) could play an important role in enabling the formation of virtual groups that link the needed IoT sensing and routing resources. These VSNs can be initiated on-demand with the goal to satisfy different IoT applications’ requirements. In this context, we present a joint algorithm for IoT Sensing Resource Allocation with Dynamic Resource-Based Routing (SRADRR). The SRADRR algorithm builds on the current distinguished empowerment of sensing networks using recent standards like RPL and 6LowPAN. The proposed algorithm suggests employing the RPL standard concepts to create DODAG routing trees that dynamically adapt according to the available sensing resources and the requirements of the running and arriving applications. Our results and implementation of the SRADRR reveal promising enhancements in the overall applications deployment rate.
Raich, Philipp, Kastner, Wolfgang.  2021.  A Computational Model for 6LoWPAN Multicast Routing. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :143–146.
Reliable group communication is an important cornerstone for various applications in the domain of Industrial Internet of Things (IIoT). Yet, despite various proposals, state-of- the-art (open) protocol stacks for IPv6-enabled Low Power and Lossy Networks (LLNs) have little to offer, regarding standardized or agreed-upon protocols for correct multicast routing, not to mention reliable multicast. We present an informal computational model, which allows us to analyze the respective candidates for multicast routing. Further, we focus on the IEEE 802.15.4/6LoWPAN stack and discuss prominent multicast routing protocols and how they fit into this model.
Nair, Devika S, BJ, Santhosh Kumar.  2021.  Identifying Rank Attacks and Alert Application in WSN. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :798–802.
Routing protocol for low power and lossy networks (RPL) is a fundamental routing protocol of 6LoWPAN, a centre correspondence standard for the Internet of Things. RPL outplay other wireless sensor and ad hoc routing protocols in the aspect of service (QoS), device management, and energy-saving performance. The Rank definition in RPL addresses several issues, such as path optimization, loop avoidance, and power overhead management. RPL rank and version number attacks are two types of the most common forms of RPL attacks, may have crucial ramification for RPL networks. The research directed upon these attacks includes considerable vulnerabilities and efficiency issues. The rank attack on sensor networks is perhaps the utmost common, posing a challenge to network connectivity by falling data or disrupting routing routes. This work presents a rank attack detection system focusing on RPL. Considering many of such issues a method has been proposed using spatial correlation function (SCF) and Dijkstra's algorithm considering parameters like energy and throughput.
Paul, Arya, Pillai, Anju S.  2021.  A Review on RPL Objective Function Improvements for IoT Applications. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :80–85.
The standard routing technique that was developed for satisfying low power IoT application needs is RPL which is a protocol in compliance with 6LoWPAN specification. RPL was created for addressing the issues and challenges of constrained and lossy network routing. However, RPL does not accomplish efficiency with respect to power and reliability altogether which are definitely needed in IoT applications. RPL runs on routing metrics and objective function which determines the optimal path in routing. This paper focuses on contributing a comprehensive survey on the improved objective functions proposed by several researchers for RPL. In addition, the paper concentrates on highlighting the strengths and shortcomings of the different approaches in designing the objective function. The approaches built on Fuzzy logic are found to be more efficient and the relevant works related to these are compared. Furthermore, we present the insights drawn from the survey and summarize the challenges which can be effectively utilized for future works.
Taghanaki, Saeid Rafiei, Arzandeh, Shohreh Behnam, Bohlooli, Ali.  2021.  A Decentralized Method for Detecting Clone ID Attacks on the Internet of Things. 2021 5th International Conference on Internet of Things and Applications (IoT). :1–6.
One of the attacks in the RPL protocol is the Clone ID attack, that the attacker clones the node's ID in the network. In this research, a Clone ID detection system is designed for the Internet of Things (IoT), implemented in Contiki operating system, and evaluated using the Cooja emulator. Our evaluation shows that the proposed method has desirable performance in terms of energy consumption overhead, true positive rate, and detection speed. The overhead cost of the proposed method is low enough that it can be deployed in limited-resource nodes. The proposed method in each node has two phases, which are the steps of gathering information and attack detection. In the proposed scheme, each node detects this type of attack using control packets received from its neighbors and their information such as IP, rank, Path ETX, and RSSI, as well as the use of a routing table. The design of this system will contribute to the security of the IoT network.
Kareem, Mohammed Aman, Tayeb, Shahab.  2021.  ML-based NIDS to secure RPL from Routing Attacks. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1000–1006.
Low power and lossy networks (LLNs) devices resource-constrained nature make it difficult to implement security mechanisms to defend against RPL routing attacks. RPLs inbuilt security functions are not efficient in preventing a wide majority of routing attacks. RPLs optional security schemes can defend against external attacks, but cannot mitigate internal attacks. Moreover, RPL does not have any mechanism to verify the integrity of control messages used to keep topology updated and route the traffic. All these factors play a major role in increasing the RPLs threat level against routing attacks. In this paper, a comparative literature review of various researchers suggesting security mechanisms to mitigate security attacks aimed at RPL has been performed and methods have been contrasted.
Bettoumi, Balkis, Bouallegue, Ridha.  2021.  Efficient Reduction of the Transmission Delay of the Authentication Based Elliptic Curve Cryptography in 6LoWPAN Wireless Sensor Networks in the Internet of Things. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1471–1476.
Wireless Sensor Network (WSN) is considered as the backbone of Internet of Things (IoT) networks. Authentication is the most important phase that guarantees secure access to such networks but it is more critical than that in traditional Internet because the communications are established between constrained devices that could not compute heavy cryptographic primitives. In this paper, we are studying with real experimentation the efficiency of HIP Diet EXchange header (HIP DEX) protocol over IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) in IoT. The adopted application layer protocol is Constrained Application Protocol (CoAP) and as a routing protocol, the Routing Protocol for Low power and lossy networks (RPL). The evaluation concerns the total End-to-End transmission delays during the authentication process between the communicating peers regarding the processing, propagation, and queuing times' overheads results. Most importantly, we propose an efficient handshake packets' compression header, and we detailed a comparison of the above evaluation's criteria before and after the proposed compression. Obtained results are very encouraging and reinforce the efficiency of HIP DEX in IoT networks during the handshake process of constrained nodes.
2021-03-09
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
2021-02-16
IBRAHIMY, S., LAMAAZI, H., BENAMAR, N..  2020.  RPL Assessment using the Rank Attack in Static and Mobile Environments. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—6.
Routing protocol running over low power and lossy networks (RPL) is currently one of the main routing protocols for the Internet of Things (IoT). This protocol has some vulnerabilities that can be exploited by attackers to change its behavior and deteriorate its performance. In the RPL rank attack, a malicious node announces a wrong rank, which leads the neighboring’s nodes to choose this node as a preferred parent. In this study, we used different metrics to assess RPL protocol in the presence of misbehaving nodes, namely the overhead, convergence time, energy consumption, preferred parent changes, and network lifetime. Our simulations results show that a mobile environment is more damaged by the rank attack than a static environment.
2020-12-21
Sanila, A., Mahapatra, B., Turuk, A. K..  2020.  Performance Evaluation of RPL protocol in a 6LoWPAN based Smart Home Environment. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
The advancement in technologies like IoT, device-to-device communication lead to concepts like smart home and smart cities, etc. In smart home architecture, different devices such as home appliances, personal computers, surveillance cameras, etc. are connected to the Internet and enable the user to monitor and control irrespective of time and location. IPv6-enabled 6LoWPAN is a low-power, low-range communication protocol designed and developed for the short-range IoT applications. 6LoWPAN is based on IEEE 802.15.4 protocol and IPv6 network protocol for low range wireless applications. Although 6LoWPAN supports different routing protocols, RPL is the widely used routing protocol for low power and lossy networks. In this work, we have taken an IoT enabled smart home environment, in which 6LoWPAN is used as a communication and RPL as a routing protocol. The performance of this proposed network model is analyzed based on the different performance metrics such as latency, PDR, and throughput. The proposed model is simulated using Cooja simulator running over the Contiki OS. Along with the Cooja simulator, the network analyzer tool Wireshark is used to analyze the network behaviors.
Samuel, C., Alvarez, B. M., Ribera, E. Garcia, Ioulianou, P. P., Vassilakis, V. G..  2020.  Performance Evaluation of a Wormhole Detection Method using Round-Trip Times and Hop Counts in RPL-Based 6LoWPAN Networks. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
The IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) has been standardized to support IP over lossy networks. RPL (Routing Protocol for Low-Power and Lossy Networks) is the common routing protocol for 6LoWPAN. Among various attacks on RPL-based networks, the wormhole attack may cause severe network disruption and is one of the hardest to detect. We have designed and implemented in ContikiOS a wormhole detection technique for 6LoWPAN, that uses round-trip times and hop counts. In addition, the performance of this technique has been evaluated in terms of power, CPU, memory, and communication overhead.
2020-06-01
Nandhini, P.S., Mehtre, B.M..  2019.  Intrusion Detection System Based RPL Attack Detection Techniques and Countermeasures in IoT: A Comparison. 2019 International Conference on Communication and Electronics Systems (ICCES). :666—672.

Routing Protocol for Low power and Lossy Network (RPL) is a light weight routing protocol designed for LLN (Low Power Lossy Networks). It is a source routing protocol. Due to constrained nature of resources in LLN, RPL is exposed to various attacks such as blackhole attack, wormhole attack, rank attack, version attack, etc. IDS (Intrusion Detection System) is one of the countermeasures for detection and prevention of attacks for RPL based loT. Traditional IDS techniques are not suitable for LLN due to certain characteristics like different protocol stack, standards and constrained resources. In this paper, we have presented various IDS research contribution for RPL based routing attacks. We have also classified the proposed IDS in the literature, according to the detection techniques. Therefore, this comparison will be an eye-opening stuff for future research in mitigating routing attacks for RPL based IoT.

Patel, Himanshu B., Jinwala, Devesh C..  2019.  Blackhole Detection in 6LoWPAN Based Internet of Things: An Anomaly Based Approach. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :947—954.

The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.

Zhang, Tianchen, Zhang, Taimin, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Cuckoo-RPL: Cuckoo Filter based RPL for Defending AMI Network from Blackhole Attacks. 2019 Chinese Control Conference (CCC). :8920—8925.

Advanced metering infrastructure (AMI) is a key component in the smart grid. Transmitting data robustly and reliably between the tremendous smart meters in the AMI is one of the most crucial tasks for providing various services in smart grid. Among the many efforts for designing practical routing protocols for the AMI, the Routing Protocol for Low-Power and Lossy Networks (RPL) proposed by the IETF ROLL working group is considered the most consolidated candidate. Resent research has shown cyber attacks such as blackhole attack and version number attack can seriously damage the performance of the network implementing RPL. The main reason that RPL is vulnerable to these kinds of attacks is the lack an authentication mechanism. In this paper, we study the impact of blackhole attacks on the performance of the AMI network and proposed a new blackhole attack that can bypass the existing defense mechanism. Then, we propose a cuckoo filter based RPL to defend the AMI network from blackhole attacks. We also give the security analysis of the proposed method.

2020-05-26
Sahay, Rashmi, Geethakumari, G., Mitra, Barsha, Thejas, V..  2018.  Exponential Smoothing based Approach for Detection of Blackhole Attacks in IoT. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Low power and lossy network (LLN) comprising of constrained devices like sensors and RFIDs, is a major component in the Internet of Things (IoT) environment as these devices provide global connectivity to physical devices or “Things”. LLNs are tied to the Internet or any High Performance Computing environment via an adaptation layer called 6LoWPAN (IPv6 over Low power Personal Area Network). The routing protocol used by 6LoWPAN is RPL (IPv6 Routing Protocol over LLN). Like many other routing protocols, RPL is susceptible to blackhole attacks which cause topological isolation for a subset of nodes in the LLN. A malicious node instigating the blackhole attack drops received packets from nodes in its subtree which it is supposed to forward. Thus, the malicious node successfully isolates nodes in its subtree from the rest of the network. In this paper, we propose an algorithm based on the concept of exponential smoothing to detect the topological isolation of nodes due to blackhole attack. Exponential smoothing is a technique for smoothing time series data using the exponential window function and is used for short, medium and long term forecasting. In our proposed algorithm, exponential smoothing is used to estimate the next arrival time of packets at the sink node from every other node in the LLN. Using this estimation, the algorithm is designed to identify the malicious nodes instigating blackhole attack in real time.
2020-02-26
Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.