Visible to the public Biblio

Filters: Keyword is CTP  [Clear All Filters]
2020-11-23
Singh, M., Kim, S..  2018.  Crypto trust point (cTp) for secure data sharing among intelligent vehicles. 2018 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Tremendous amount of research is going on in the field of Intelligent vehicles (IVs)in industries and academics. Although, IV supports a better convenience for the society, but it also suffers from some concerns. Security is the major concern in Intelligent vehicle technology, due to its high exposure to data and information communication. The environment of the IV communication has many security vulnerabilities, which cannot be solved by Traditional Security approaches due to their fixed capabilities. Among security, trust, data accuracy and reliability of communication data in the communication channel are the other issues in IV communication. Blockchain is a peer-to-peer, distributed and decentralized technology which is used by the digital currency Bit-coin, to build trust and reliability and it has capability and is feasible to use Blockchain in IV Communication. In this paper, we propose, Blockchain based crypto Trust point (cTp) mechanism for IV communication. Using cTp in the IVs communication environment can provide IV data security and reliability. cTp mechanism accounts for the legitimate and illegitimate vehicles behavior, and rewarding thereby building trust among the vehicles. We also propose a reward based system using cTp (exchange of some cTp among IVs, during successful communication). We use blockchain technology in the Intelligent Transportation System (ITS) for the data management of the cTp. Using ITS, cTp details of every vehicle can be accessed ubiquitously by IVs. We evaluation, our proposal using the intersection use case scenario for intelligent vehicles communication.
2017-04-24
Peres, Bruna Soares, Souza, Otavio Augusto de Oliveira, Santos, Bruno Pereira, Junior, Edson Roteia Araujo, Goussevskaia, Olga, Vieira, Marcos Augusto Menezes, Vieira, Luiz Filipe Menezes, Loureiro, Antonio Alfredo Ferreira.  2016.  Matrix: Multihop Address Allocation and Dynamic Any-to-Any Routing for 6LoWPAN. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :302–309.

Standard routing protocols for IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) are mainly designed for data collection applications and work by establishing a tree-based network topology, which enables packets to be sent upwards, from the leaves to the root, adapting to dynamics of low-power communication links. The routing tables in such unidirectional networks are very simple and small since each node just needs to maintain the address of its parent in the tree, providing the best-quality route at every moment. In this work, we propose Matrix, a platform-independent routing protocol that utilizes the existing tree structure of the network to enable reliable and efficient any-to-any data traffic. Matrix uses hierarchical IPv6 address assignment in order to optimize routing table size, while preserving bidirectional routing. Moreover, it uses a local broadcast mechanism to forward messages to the right subtree when persistent node or link failures occur. We implemented Matrix on TinyOS and evaluated its performance both analytically and through simulations on TOSSIM. Our results show that the proposed protocol is superior to available protocols for 6LoWPAN, when it comes to any-to-any data communication, in terms of reliability, message efficiency, and memory footprint.