Biblio
This research proposes a system for detecting known and unknown Distributed Denial of Service (DDoS) Attacks. The proposed system applies two different intrusion detection approaches anomaly-based distributed artificial neural networks(ANNs) and signature-based approach. The Amazon public cloud was used for running Spark as the fast cluster engine with varying cores of machines. The experiment results achieved the highest detection accuracy and detection rate comparing to signature based or neural networks-based approach.
Existing data management and searching system for Internet of Things uses centralized database. For this reason, security vulnerabilities are found in this system which consists of server such as IP spoofing, single point of failure and Sybil attack. This paper proposes data management system is based on blockchain which ensures security by using ECDSA digital signature and SHA-256 hash function. Location that is indicated as IP address of data owner and data name are transcribed in block which is included in the blockchain. Furthermore, we devise data manegement and searching method through analyzing block hash value. By using security properties of blockchain such as authentication, non-repudiation and data integrity, this system has advantage of security comparing to previous data management and searching system using centralized database or P2P networks.
Digital signatures are perhaps the most important base for authentication and trust relationships in large scale systems. More specifically, various applications of signatures provide privacy and anonymity preserving mechanisms and protocols, and these, in turn, are becoming critical (due to the recently recognized need to protect individuals according to national rules and regulations). A specific type of signatures called "signatures with efficient protocols", as introduced by Camenisch and Lysyanskaya (CL), efficiently accommodates various basic protocols and extensions like zero-knowledge proofs, signing committed messages, or re-randomizability. These are, in fact, typical operations associated with signatures used in typical anonymity and privacy-preserving scenarios. To date there are no "signatures with efficient protocols" which are based on simple assumptions and truly practical. These two properties assure us a robust primitive: First, simple assumptions are needed for ensuring that this basic primitive is mathematically robust and does not require special ad hoc assumptions that are more risky, imply less efficiency, are more tuned to the protocol itself, and are perhaps less trusted. In the other dimension, efficiency is a must given the anonymity applications of the protocol, since without proper level of efficiency the future adoption of the primitives is always questionable (in spite of their need). In this work, we present a new CL-type signature scheme that is re-randomizable under a simple, well-studied, and by now standard, assumption (SXDH). The signature is efficient (built on the recent QA-NIZK constructions), and is, by design, suitable to work in extended contexts that typify privacy settings (like anonymous credentials, group signature, and offline e-cash). We demonstrate its power by presenting practical protocols based on it.
With the advent of the Internet of Things (IoT) and big data, high fidelity localization and tracking systems that employ cameras, RFIDs, and attached sensors intrude on personal privacy. However, the benefit of localization information sharing enables trend forecasting and automation. To address this challenge, we introduce Wobly, an attribute based signature (ABS) that measures gait. Wobly passively receives Wi-Fi beacons and produces human signatures based on the Doppler Effect and multipath signals without attached devices and out of direct line-of-sight. Because signatures are specific to antenna placement and room configuration and do not require sensor attachments, the identities of the individuals can remain anonymous. However, the gait based signatures are still unique, and thus Wobly is able to track individuals in a building or home. Wobly uses the physical layer channel and the unique human gait as a means of encoding a person's identity. We implemented Wobly on a National Instruments Radio Frequency (RF) test bed. Using a simple naive Bayes classifier, the correct identification rate was 87% with line-of-sight (LoS) and 77% with non-line-of-sight (NLoS).