Visible to the public Biblio

Filters: Keyword is classifier  [Clear All Filters]
2022-07-05
Fallah, Zahra, Ebrahimpour-Komleh, Hossein, Mousavirad, Seyed Jalaleddin.  2021.  A Novel Hybrid Pyramid Texture-Based Facial Expression Recognition. 2021 5th International Conference on Pattern Recognition and Image Analysis (IPRIA). :1—6.
Automated analysis of facial expressions is one of the most interesting and challenging problems in many areas such as human-computer interaction. Facial images are affected by many factors, such as intensity, pose and facial expressions. These factors make facial expression recognition problem a challenge. The aim of this paper is to propose a new method based on the pyramid local binary pattern (PLBP) and the pyramid local phase quantization (PLPQ), which are the extension of the local binary pattern (LBP) and the local phase quantization (LPQ) as two methods for extracting texture features. LBP operator is used to extract LBP feature in the spatial domain and LPQ operator is used to extract LPQ feature in the frequency domain. The combination of features in spatial and frequency domains can provide important information in both domains. In this paper, PLBP and PLPQ operators are separately used to extract features. Then, these features are combined to create a new feature vector. The advantage of pyramid transform domain is that it can recognize facial expressions efficiently and with high accuracy even for very low-resolution facial images. The proposed method is verified on the CK+ facial expression database. The proposed method achieves the recognition rate of 99.85% on CK+ database.
2021-08-05
Ramasubramanian, Muthukumaran, Muhammad, Hassan, Gurung, Iksha, Maskey, Manil, Ramachandran, Rahul.  2020.  ES2Vec: Earth Science Metadata Keyword Assignment using Domain-Specific Word Embeddings. 2020 SoutheastCon. :1—6.
Earth science metadata keyword assignment is a challenging problem. Dataset curators select appropriate keywords from the Global Change Master Directory (GCMD) set of keywords. The keywords are integral part of search and discovery of these datasets. Hence, selection of keywords are crucial in increasing the discoverability of datasets. Utilizing machine learning techniques, we provide users with automated keyword suggestions as an improved approach to complement manual selection. We trained a machine learning model that leverages the semantic embedding ability of Word2Vec models to process abstracts and suggest relevant keywords. A user interface tool we built to assist data curators in assignment of such keywords is also described.
2020-10-05
Cruz, Rodrigo Santa, Fernando, Basura, Cherian, Anoop, Gould, Stephen.  2018.  Neural Algebra of Classifiers. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). :729—737.

The world is fundamentally compositional, so it is natural to think of visual recognition as the recognition of basic visually primitives that are composed according to well-defined rules. This strategy allows us to recognize unseen complex concepts from simple visual primitives. However, the current trend in visual recognition follows a data greedy approach where huge amounts of data are required to learn models for any desired visual concept. In this paper, we build on the compositionality principle and develop an "algebra" to compose classifiers for complex visual concepts. To this end, we learn neural network modules to perform boolean algebra operations on simple visual classifiers. Since these modules form a complete functional set, a classifier for any complex visual concept defined as a boolean expression of primitives can be obtained by recursively applying the learned modules, even if we do not have a single training sample. As our experiments show, using such a framework, we can compose classifiers for complex visual concepts outperforming standard baselines on two well-known visual recognition benchmarks. Finally, we present a qualitative analysis of our method and its properties.

2020-09-04
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
2020-08-24
Liang, Dai, Pan, Peisheng.  2019.  Research on Intrusion Detection Based on Improved DBN-ELM. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :495–499.
To leverage the feature extraction of DBN and the fast classification and good generalization of ELM, an improved method of DBN-ELM is proposed for intrusion detection. The improved model uses deep belief network (DBN) to train NSL-KDD dataset and feed them back to the extreme learning machine (ELM) for classification. A classifier is connected at each intermediate level of the DBN-ELM. By majority voting on the output of classifier and ELM, the final output is calculated by integration. Experiments show that the improved model increases the classification confidence and accuracy of the classifier. The model has been benchmarked on the NSL-KDD dataset, and the accuracy of the model has been improved to 97.82%, while the false alarm rate has been reduced to 1.81%. Proposed improved model has been also compared with DBN, ELM, DBN-ELM and achieves competitive accuracy.
2020-04-10
Chapla, Happy, Kotak, Riddhi, Joiser, Mittal.  2019.  A Machine Learning Approach for URL Based Web Phishing Using Fuzzy Logic as Classifier. 2019 International Conference on Communication and Electronics Systems (ICCES). :383—388.

Phishing is the major problem of the internet era. In this era of internet the security of our data in web is gaining an increasing importance. Phishing is one of the most harmful ways to unknowingly access the credential information like username, password or account number from the users. Users are not aware of this type of attack and later they will also become a part of the phishing attacks. It may be the losses of financial found, personal information, reputation of brand name or trust of brand. So the detection of phishing site is necessary. In this paper we design a framework of phishing detection using URL.

2020-02-10
Ishtiaq, Asra, Islam, Muhammad Arshad, Azhar Iqbal, Muhammad, Aleem, Muhammad, Ahmed, Usman.  2019.  Graph Centrality Based Spam SMS Detection. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :629–633.

Short messages usage has been tremendously increased such as SMS, tweets and status updates. Due to its popularity and ease of use, many companies use it for advertisement purpose. Hackers also use SMS to defraud users and steal personal information. In this paper, the use of Graphs centrality metrics is proposed for spam SMS detection. The graph centrality measures: degree, closeness, and eccentricity are used for classification of SMS. Graphs for each class are created using labeled SMS and then unlabeled SMS is classified using the centrality scores of the token available in the unclassified SMS. Our results show that highest precision and recall is achieved by using degree centrality. Degree centrality achieved the highest precision i.e. 0.81 and recall i.e., 0.76 for spam messages.

2019-06-10
Kornish, D., Geary, J., Sansing, V., Ezekiel, S., Pearlstein, L., Njilla, L..  2018.  Malware Classification Using Deep Convolutional Neural Networks. 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1-6.

In recent years, deep convolution neural networks (DCNNs) have won many contests in machine learning, object detection, and pattern recognition. Furthermore, deep learning techniques achieved exceptional performance in image classification, reaching accuracy levels beyond human capability. Malware variants from similar categories often contain similarities due to code reuse. Converting malware samples into images can cause these patterns to manifest as image features, which can be exploited for DCNN classification. Techniques for converting malware binaries into images for visualization and classification have been reported in the literature, and while these methods do reach a high level of classification accuracy on training datasets, they tend to be vulnerable to overfitting and perform poorly on previously unseen samples. In this paper, we explore and document a variety of techniques for representing malware binaries as images with the goal of discovering a format best suited for deep learning. We implement a database for malware binaries from several families, stored in hexadecimal format. These malware samples are converted into images using various approaches and are used to train a neural network to recognize visual patterns in the input and classify malware based on the feature vectors. Each image type is assessed using a variety of learning models, such as transfer learning with existing DCNN architectures and feature extraction for support vector machine classifier training. Each technique is evaluated in terms of classification accuracy, result consistency, and time per trial. Our preliminary results indicate that improved image representation has the potential to enable more effective classification of new malware.

2019-02-08
Lee, D. ', La, W. Gyu, Kim, H..  2018.  Drone Detection and Identification System Using Artificial Intelligence. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1131-1133.

As drone attracts much interest, the drone industry has opened their market to ordinary people, making drones to be used in daily lives. However, as it got easier for drone to be used by more people, safety and security issues have raised as accidents are much more likely to happen: colliding into people by losing control or invading secured properties. For safety purposes, it is essential for observers and drone to be aware of an approaching drone. In this paper, we introduce a comprehensive drone detection system based on machine learning. This system is designed to be operable on drones with camera. Based on the camera images, the system deduces location on image and vendor model of drone based on machine classification. The system is actually built with OpenCV library. We collected drone imagery and information for learning process. The system's output shows about 89 percent accuracy.

2019-01-21
Kos, J., Fischer, I., Song, D..  2018.  Adversarial Examples for Generative Models. 2018 IEEE Security and Privacy Workshops (SPW). :36–42.

We explore methods of producing adversarial examples on deep generative models such as the variational autoencoder (VAE) and the VAE-GAN. Deep learning architectures are known to be vulnerable to adversarial examples, but previous work has focused on the application of adversarial examples to classification tasks. Deep generative models have recently become popular due to their ability to model input data distributions and generate realistic examples from those distributions. We present three classes of attacks on the VAE and VAE-GAN architectures and demonstrate them against networks trained on MNIST, SVHN and CelebA. Our first attack leverages classification-based adversaries by attaching a classifier to the trained encoder of the target generative model, which can then be used to indirectly manipulate the latent representation. Our second attack directly uses the VAE loss function to generate a target reconstruction image from the adversarial example. Our third attack moves beyond relying on classification or the standard loss for the gradient and directly optimizes against differences in source and target latent representations. We also motivate why an attacker might be interested in deploying such techniques against a target generative network.

2018-07-18
Vávra, J., Hromada, M..  2017.  Anomaly Detection System Based on Classifier Fusion in ICS Environment. 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). :32–38.

The detection of cyber-attacks has become a crucial task for highly sophisticated systems like industrial control systems (ICS). These systems are an essential part of critical information infrastructure. Therefore, we can highlight their vital role in contemporary society. The effective and reliable ICS cyber defense is a significant challenge for the cyber security community. Thus, intrusion detection is one of the demanding tasks for the cyber security researchers. In this article, we examine classification problem. The proposed detection system is based on supervised anomaly detection techniques. Moreover, we utilized classifiers algorithms in order to increase intrusion detection capabilities. The fusion of the classifiers is the way how to achieve the predefined goal.

2018-06-20
Kebede, T. M., Djaneye-Boundjou, O., Narayanan, B. N., Ralescu, A., Kapp, D..  2017.  Classification of Malware programs using autoencoders based deep learning architecture and its application to the microsoft malware Classification challenge (BIG 2015) dataset. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :70–75.

Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.

2018-01-10
Aono, K., Chakrabartty, S., Yamasaki, T..  2017.  Infrasonic scene fingerprinting for authenticating speaker location. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :361–365.
Ambient infrasound with frequency ranges well below 20 Hz is known to carry robust navigation cues that can be exploited to authenticate the location of a speaker. Unfortunately, many of the mobile devices like smartphones have been optimized to work in the human auditory range, thereby suppressing information in the infrasonic region. In this paper, we show that these ultra-low frequency cues can still be extracted from a standard smartphone recording by using acceleration-based cepstral features. To validate our claim, we have collected smartphone recordings from more than 30 different scenes and used the cues for scene fingerprinting. We report scene recognition rates in excess of 90% and a feature set analysis reveals the importance of the infrasonic signatures towards achieving the state-of-the-art recognition performance.
2017-12-28
Stanić, B., Afzal, W..  2017.  Process Metrics Are Not Bad Predictors of Fault Proneness. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :493–499.

The correct prediction of faulty modules or classes has a number of advantages such as improving the quality of software and assigning capable development resources to fix such faults. There have been different kinds of fault/defect prediction models proposed in literature, but a great majority of them makes use of static code metrics as independent variables for making predictions. Recently, process metrics have gained a considerable attention as alternative metrics to use for making trust-worthy predictions. The objective of this paper is to investigate different combinations of static code and process metrics for evaluating fault prediction performance. We have used publicly available data sets, along with a frequently used classifier, Naive Bayes, to run our experiments. We have, both statistically and visually, analyzed our experimental results. The statistical analysis showed evidence against any significant difference in fault prediction performances for a variety of different combinations of metrics. This reinforced earlier research results that process metrics are as good as predictors of fault proneness as static code metrics. Furthermore, the visual inspection of box plots revealed that the best set of metrics for fault prediction is a mix of both static code and process metrics. We also presented evidence in support of some process metrics being more discriminating than others and thus making them as good predictors to use.

2017-04-24
Bulakh, Vlad, Gupta, Minaxi.  2016.  Countering Phishing from Brands' Vantage Point. Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics. :17–24.

Most anti-phishing solutions that exist today require scanning a large portion of the web, which is vast and equivalent to finding a needle in a haystack. In addition, such solutions are not very efficient. We propose a different approach. Our solution does not rely on the scanning of the entire Internet or a large portion of it and only needs access to the brand's traffic in order to be able to detect phishing attempts against that brand. By analyzing a sample of phishing websites, we find features that can be used to distinguish phishing websites from the legitimate ones. We then use these features to train a machine learning classifier capable of helping brands detect phishing attempts against them. Our approach can detect up to 86% of phishing attacks against the brands and is best used as a complementary tool to the existing anti-phishing solutions.