Visible to the public Biblio

Found 1897 results

Filters: Keyword is compositionality  [Clear All Filters]
2022-06-09
Aleksandrov, Mykyta.  2021.  Confirmation of Mutual Synchronization of the TPMs Using Hash Functions. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :80–83.
This paper presents experimental results of evaluating the effect of network delay on the synchronization time of three parity machines. The possibility of using a hash function to confirm the synchronization of parity tree machines has been investigated. Three parity machines have been proposed as a modification of the symmetric encryption algorithm. One advantage of the method is the possibility to use the phenomenon of mutual synchronization of neural networks to generate an identical encryption key for users without the need to transfer it. As a result, the degree of influence of network delay and the type of hash function used on the synchronization time of neural networks was determined. The degree of influence of the network delay and hash function was determined experimentally. The hash function sha512 showed the best results. The tasks for further research have been defined.
Palit, Shekhar, Wortman, Kevin A..  2021.  Perfect Tabular Hashing in Pseudolinear Time. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0228–0232.
We present an algorithm for generating perfect tabulation hashing functions by reduction to Boolean satisfaction (SAT). Tabulation hashing is a high-performance family of hash functions for hash tables that involves computing the XOR of random lookup tables. Given n keys of word size W, we show how to compute a perfect hash function in O(nW) worst-case time. This is competitive with other perfect hashing methods, and the resultant hash functions are simple and performant.
Yan, Longchuan, Zhang, Zhaoxia, Huang, Huige, Yuan, Xiaoyu, Peng, Yuanlong, Zhang, Qingyun.  2021.  An Improved Deep Pairwise Supervised Hashing Algorithm for Fast Image Retrieval. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:1152–1156.
In recent years, hashing algorithm has been widely researched and has made considerable progress in large-scale image retrieval tasks due to its advantages of convenient storage and fast calculation efficiency. Nowadays most researchers use deep convolutional neural networks (CNNs) to perform feature learning and hash coding learning at the same time for image retrieval and the deep hashing methods based on deep CNNs perform much better than the traditional manual feature hashing methods. But most methods are designed to handle simple binary similarity and decrease quantization error, ignoring that the features of similar images and hashing codes generated are not compact enough. In order to enhance the performance of CNNs-based hashing algorithms for large scale image retrieval, this paper proposes a new deep-supervised hashing algorithm in which a novel channel attention mechanism is added and the loss function is elaborately redesigned to generate compact binary codes. It experimentally proves that, compared with the existing hashing methods, this method has better performance on two large scale image datasets CIFAR-10 and NUS-WIDE.
Juleang, Pakom, Mitatha, Somsak.  2021.  Optical Hash Function for High Speed and High Security Algorithm using Ring Resonator System. 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). :160–163.
This work presents a novel security technique using the optical hash function to create a message digest algorithm in the wavelength domain. The optical devices used for high speed and high security algorithm handling comprised a PANDA ring resonator connected with an add/drop filter system. The PANDA ring resonator was introduced to access the dynamic behavior of bright-bright soliton collision within the modified add/drop filter. Outputs of the dynamic states formed key suppression as a high security application for optical cryptography. The add/drop filter was an essential device in the proposed design for optical hash function processing. Simulation outputs proved that the proposed technique obtained optical hash function in the wavelength domain for real time message digest creation. The wavelength of the data must be within 40% of the center wavelength of the system input signal. The integrity of the data was maintained by this highly secure process.
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
Hoarau, Kevin, Tournoux, Pierre Ugo, Razafindralambo, Tahiry.  2021.  Suitability of Graph Representation for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :305–310.
The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP can have several causes (mis-configuration, outage and attacks). These anomalies are classified into large or small scale anomalies. Machine learning models are used to analyze and detect anomalies from the complex data extracted from BGP behavior. Two types of data representation can be used inside the machine learning models: a graph representation of the network (graph features) or a statistical computation on the data (statistical features). In this paper, we evaluate and compare the accuracy of machine learning models using graph features and statistical features on both large and small scale BGP anomalies. We show that statistical features have better accuracy for large scale anomalies, and graph features increase the detection accuracy by 15% for small scale anomalies and are well suited for BGP small scale anomaly detection.
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
Pletinckx, Stijn, Jansen, Geert Habben, Brussen, Arjen, van Wegberg, Rolf.  2021.  Cash for the Register? Capturing Rationales of Early COVID-19 Domain Registrations at Internet-scale 2021 12th International Conference on Information and Communication Systems (ICICS). :41–48.
The COVID-19 pandemic introduced novel incentives for adversaries to exploit the state of turmoil. As we have witnessed with the increase in for instance phishing attacks and domain name registrations piggybacking the COVID-19 brand name. In this paper, we perform an analysis at Internet-scale of COVID-19 domain name registrations during the early stages of the virus' spread, and investigate the rationales behind them. We leverage the DomainTools COVID-19 Threat List and additional measurements to analyze over 150,000 domains registered between January 1st 2020 and May 1st 2020. We identify two key rationales for covid-related domain registrations. Online marketing, by either redirecting traffic or hosting a commercial service on the domain, and domain parking, by registering domains containing popular COVID-19 keywords, presumably anticipating a profit when reselling the domain later on. We also highlight three public policy take-aways that can counteract this domain registration behavior.
Pour, Morteza Safaei, Watson, Dylan, Bou-Harb, Elias.  2021.  Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet Measurements. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :497–506.

The Internet-of-Things (IoT) paradigm at large continues to be compromised, hindering the privacy, dependability, security, and safety of our nations. While the operational security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue to develop capabilities for monitoring cyberspace, tools which are IoT-centric remain at its infancy. To this end, we address this gap by innovating an actionable Cyber Threat Intelligence (CTI) feed related to Internet-scale infected IoT devices. The feed analyzes, in near real-time, 3.6TB of daily streaming passive measurements ( ≈ 1M pps) by applying a custom-developed learning methodology to distinguish between compromised IoT devices and non-IoT nodes, in addition to labeling the type and vendor. The feed is augmented with third party information to provide contextual information. We report on the operation, analysis, and shortcomings of the feed executed during an initial deployment period. We make the CTI feed available for ingestion through a public, authenticated API and a front-end platform.

2022-06-08
Jiang, Hua.  2021.  Application and Research of Intelligent Security System Based on NFC and Cloud Computing Technology. 2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :200–202.
With the rapid development of urbanization, community security and public security have become an important social issue. As conventional patrol methods can not effectively ensure effective supervision, this paper studies the application of NFC (Near Field Communication) technology in intelligent security system, designs and constructs a set of intelligent security system suitable for public security patrol or security patrol combined with current cloud service technology. The system can not only solve the digital problem of patrol supervision in the current public security, but also greatly improve the efficiency of security and improve the service quality of the industry through the application of intelligent technology.
Zhang, Guangxin, Zhao, Liying, Qiao, Dongliang, Shang, Ziwen, Huang, Rui.  2021.  Design of transmission line safety early warning system based on big data variable analysis. 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). :90–93.
In order to improve the accuracy and efficiency of transmission line safety early warning, a transmission line safety early warning system based on big data variable analysis is proposed. Firstly, the overall architecture of the system is designed under the B / S architecture. Secondly, in the hardware part of the system, the security data real-time monitoring module, data transmission module and security warning module are designed to meet the functional requirements of the system. Finally, in the system software design part, the big data variable analysis method is used to calculate the hidden danger of transmission line safety, so as to improve the effectiveness of transmission safety early warning. The experimental results show that, compared with the traditional security early warning system, the early warning accuracy and efficiency of the designed system are significantly improved, which can ensure the safe operation of the transmission line.
Ma, Yingjue, Ni, Hui-jun, Li, Yanping.  2021.  Information Security Practice of Intelligent Knowledge Ecological Communities with Cloud Computing. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :242–245.
With powerful ability to organize, retrieve and share information, cloud computing technology has effectively improved the development of intelligent learning ecological Communities. The study finds development create a security atmosphere with all homomorphic encryption technology, virtualization technology to prevent the leakage and loss of information data. The result provided a helpful guideline to build a security environment for intelligent ecological communities.
Xue, Bi.  2021.  Information Fusion and Intelligent Management of Industrial Internet of Things under the Background of Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :68–71.
This paper summarizes the types and contents of enterprise big data information, analyzes the demand and characteristics of enterprise shared data information based on the Internet of things, and analyzes the current situation of enterprise big data fusion at home and abroad. Firstly, using the idea of the Internet of things for reference, the intelligent sensor is used as the key component of data acquisition, and the multi energy data acquisition technology is discussed. Then the data information of entity enterprises is taken as the research object and a low energy consumption transmission method based on data fusion mechanism for industrial ubiquitous Internet of things is proposed. Finally, a network monitoring and data fusion platform for the industrial Internet of things is implemented. The monitoring node networking and platform usability test are also performed. It is proved that the scheme can achieve multi parameter, real-time, high reliable network intelligent management.
Sun, Yue, Dong, Bin, Chen, Wei, Xu, Xiaotian, Si, Guanlin, Jing, Sen.  2021.  Research on Security Evaluation Technology of Intelligent Video Terminal. 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). :339–342.
The application of intelligent video terminal has spread in all aspects of production and life, such as urban transportation, enterprises, hospitals, banks, and families. In recent years, intelligent video terminals, video recorders and other video monitoring system components are frequently exposed to high risks of security vulnerabilities, which is likely to threaten the privacy of users and data security. Therefore, it is necessary to strengthen the security research and testing of intelligent video terminals, and formulate reinforcement and protection strategies based on the evaluation results, in order to ensure the confidentiality, integrity and availability of data collected and transmitted by intelligent video terminals.
Chen, Lin, Qiu, Huijun, Kuang, Xiaoyun, Xu, Aidong, Yang, Yiwei.  2021.  Intelligent Data Security Threat Discovery Model Based on Grid Data. 2021 6th International Conference on Image, Vision and Computing (ICIVC). :458–463.
With the rapid construction and popularization of smart grid, the security of data in smart grid has become the basis for the safe and stable operation of smart grid. This paper proposes a data security threat discovery model for smart grid. Based on the prediction data analysis method, combined with migration learning technology, it analyzes different data, uses data matching process to classify the losses, and accurately predicts the analysis results, finds the security risks in the data, and prevents the illegal acquisition of data. The reinforcement learning and training process of this method distinguish the effective authentication and illegal access to data.
Kong, Hongshan, Tang, Jun.  2021.  Agent-based security protection model of secret-related carrier intelligent management and control. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:301–304.
Secret-related carrier intelligent management and control system uses the Internet of Things and artificial intelligence to solve the transformation of secret-related carrier management and control from manual operation to automatic detection, precise monitoring, and intelligent decision-making, and use technical means to resolve security risks. However, the coexistence of multiple heterogeneous networks will lead to various network security problems in the secret carrier intelligent management and control. Aiming at the actual requirements of the intelligent management and control of secret-related carriers, this paper proposes a system structure including device domain, network domain, platform domain and user domain, and conducts a detailed system security analysis, and introduces intelligent agent technology, and proposes a distributed system. The hierarchical system structure of the secret-related carrier intelligent management and control security protection model has good robustness and portability.
Jia, Xianfeng, Liu, Tianyu, Sun, Chunhui, Wu, Zhi.  2021.  Analysis on the Application of Cryptographic Technology in the Communication Security of Intelligent Networked Vehicles. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :423–427.

Intelligent networked vehicles are rapidly developing in intelligence and networking. The communication architecture is becoming more complex, external interfaces are richer, and data types are more complex. Different from the information security of the traditional Internet of Things, the scenarios that need to be met for the security of the Internet of Vehicles are more diverse and the security needs to be more stable. Based on the security technology of traditional Internet of Things, password application is the main protection method to ensure the privacy and non-repudiation of data communication. This article mainly elaborates the application of security protection methods using password-related protection technologies in car-side scenarios and summarizes the security protection recommendations of contemporary connected vehicles in combination with the secure communication architecture of the Internet of Vehicles.

Yang, Ruxia, Gao, Xianzhou, Gao, Peng.  2021.  Research on Intelligent Recognition and Tracking Technology of Sensitive Data for Electric Power Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :229–234.
Current power sensitive data security protection adopts classification and grading protection. Company classification and grading are mainly in formulating specifications. Data classification and grading processing is carried out manually, which is heavy and time-consuming, while traditional data identification mainly relies on rules for data identification, the level of automation and intelligence is low, and there are many problems in recognition accuracy. Data classification and classification is the basis of data security protection. Sensitive data identification is the key to data classification and classification, and it is also the first step to achieve accurate data security protection. This paper proposes an intelligent identification and tracking technology of sensitive data for electric power big data, which can improve the ability of data classification and classification, help the realization of data classification and classification, and provide support for the accurate implementation of data security capabilities.
Imtiaz, Sayem Mohammad, Sultana, Kazi Zakia, Varde, Aparna S..  2021.  Mining Learner-friendly Security Patterns from Huge Published Histories of Software Applications for an Intelligent Tutoring System in Secure Coding. 2021 IEEE International Conference on Big Data (Big Data). :4869–4876.

Security patterns are proven solutions to recurring problems in software development. The growing importance of secure software development has introduced diverse research efforts on security patterns that mostly focused on classification schemes, evolution and evaluation of the patterns. Despite a huge mature history of research and popularity among researchers, security patterns have not fully penetrated software development practices. Besides, software security education has not been benefited by these patterns though a commonly stated motivation is the dissemination of expert knowledge and experience. This is because the patterns lack a simple embodiment to help students learn about vulnerable code, and to guide new developers on secure coding. In order to address this problem, we propose to conduct intelligent data mining in the context of software engineering to discover learner-friendly software security patterns. Our proposed model entails knowledge discovery from large scale published real-world vulnerability histories in software applications. We harness association rule mining for frequent pattern discovery to mine easily comprehensible and explainable learner-friendly rules, mainly of the type "flaw implies fix" and "attack type implies flaw", so as to enhance training in secure coding which in turn would augment secure software development. We propose to build a learner-friendly intelligent tutoring system (ITS) based on the newly discovered security patterns and rules explored. We present our proposed model based on association rule mining in secure software development with the goal of building this ITS. Our proposed model and prototype experiments are discussed in this paper along with challenges and ongoing work.

Guo, Jiansheng, Qi, Liang, Suo, Jiao.  2021.  Research on Data Classification of Intelligent Connected Vehicles Based on Scenarios. 2021 International Conference on E-Commerce and E-Management (ICECEM). :153–158.
The intelligent connected vehicle industry has entered a period of opportunity, industry data is accumulating rapidly, and the formulation of industry standards to regulate big data management and application is imminent. As the basis of data security, data classification has received unprecedented attention. By combing through the research and development status of data classification in various industries, this article combines industry characteristics and re-examines the framework of industry data classification from the aspects of information security and data assetization, and tries to find the balance point between data security and data value. The intelligent networked automobile industry provides support for big data applications, this article combines the characteristics of the connected vehicle industry, re-examines the data characteristics of the intelligent connected vehicle industry from the 2 aspects as information security and data assetization, and eventually proposes a scene-based hierarchical framework. The framework includes the complete classification process, model, and quantifiable parameters, which provides a solution and theoretical endorsement for the construction of a big data automatic classification system for the intelligent connected vehicle industry and safe data open applications.
2022-06-06
Assarandarban, Mona, Bhowmik, Tanmay, Do, Anh Quoc, Chekuri, Surendra, Wang, Wentao, Niu, Nan.  2021.  Foraging-Theoretic Tool Composition: An Empirical Study on Vulnerability Discovery. 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI). :139–146.

Discovering vulnerabilities is an information-intensive task that requires a developer to locate the defects in the code that have security implications. The task is difficult due to the growing code complexity and some developer's lack of security expertise. Although tools have been created to ease the difficulty, no single one is sufficient. In practice, developers often use a combination of tools to uncover vulnerabilities. Yet, the basis on which different tools are composed is under explored. In this paper, we examine the composition base by taking advantage of the tool design patterns informed by foraging theory. We follow a design science methodology and carry out a three-step empirical study: mapping 34 foraging-theoretic patterns in a specific vulnerability discovery tool, formulating hypotheses about the value and cost of foraging when considering two composition scenarios, and performing a human-subject study to test the hypotheses. Our work offers insights into guiding developers' tool usage in detecting software vulnerabilities.

Dimitriadis, Athanasios, Lontzetidis, Efstratios, Mavridis, Ioannis.  2021.  Evaluation and Enhancement of the Actionability of Publicly Available Cyber Threat Information in Digital Forensics. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :318–323.

Cyber threat information can be utilized to investigate incidents by leveraging threat-related knowledge from prior incidents with digital forensic techniques and tools. However, the actionability of cyber threat information in digital forensics has not yet been evaluated. Such evaluation is important to ascertain that cyber threat information is as actionable as it can be and to reveal areas of improvement. In this study, a dataset of cyber threat information products was created from well-known cyber threat information sources and its actionability in digital forensics was evaluated. The evaluation results showed a high level of cyber threat information actionability that still needs enhancements in supporting some widely present types of attacks. To further enhance the provision of actionable cyber threat information, the development of the new TREVItoSTIX Autopsy module is presented. TREVItoSTIX allows the expression of the findings of an incident investigation in the structured threat information expression format in order to be easily shared and reused in future digital forensics investigations.

Fang, Yuan, Li, Lixiang, Li, Yixiao, Peng, Haipeng.  2021.  High Efficient and Secure Chaos-Based Compressed Spectrum Sensing in Cognitive Radio IoT Network. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :670–676.
In recent years, with the rapid update of wireless communication technologies such as 5G and the Internet of Things, as well as the explosive growth of wireless intelligent devices, people's demand for radio spectrum resources is increasing, which leads spectrum scarcity is becoming more serious. To address the scarcity of spectrum, the Internet of Things based on cognitive radio (CR-IoT) has become an effective technique to enable IoT devices to reuse the spectrum that has been fully utilized. The frequency band information is transmitted through wireless communication in the CR-IoT network, so the node is easily to be eavesdropped or tampered with by attackers in the process of transmitting data, which leads to information leakage and wrong perception results. To deal with the security problem of channel data transmission, this paper proposes a chaotic compressed spectrum sensing algorithm. In this algorithm, the chaotic parameter package is utilized to generate the measurement matrix, which makes good use of the sensitivity of the initial value of chaotic system to improve the transmission security. And the introduction of the semi-tensor theory significantly reduces the dimension of the matrix that the secondary user needs to store. In addition, the semi-tensor compressed sensing is used in the fusion center for parallel reconstruction process, which effectively reduces the sensing time delay. The simulation results show that the chaotic compressed spectrum sensing algorithm can achieve faster, high-quality, and low-energy channel energy transmission.
Lau, Tuong Phi.  2021.  Software Reuse Exploits in Node.js Web Apps. 2021 5th International Conference on System Reliability and Safety (ICSRS). :190–197.
The npm ecosystem has the largest number of third-party packages for making node.js-based web apps. Due to its free and open nature, it can raise diversity of security concerns. Adversaries can take advantage of existing software APIs included in node.js web apps for achieving their own malicious targets. More specifically, attackers may inject malicious data into its client requests and then submit them to a victim node.js server. It then may manipulate program states to reuse sensitive APIs as gadgets required in the node.js web app executed on the victim server. Once such sensitive APIs can be successfully accessed, it may indirectly raise security threats such as code injection attacks, software-layer DoS attacks, private data leaks, etc. For example, when the sensitive APIs are implemented as pattern matching operations and are called with hard-to-match input string submitted by clients, it may launch application-level DoS attacks.In this paper, we would like to introduce software reuse exploits through reusing packages available in node.js web apps for posing security threats to servers. In addition, we propose an approach based on data flow analysis to detect vulnerable npm packages that can be exposed to such exploits. To evaluate its effectiveness, we collected a dataset of 15,000 modules from the ecosystem to conduct the experiments. As a result, it discovered out 192 vulnerable packages. By manual analysis, we identified 156 true positives of 192 that can be exposed to code reuse exploits for remotely causing software-layer DoS attacks with 128 modules of 156, for code injection with 18 modules, and for private data leaks including 10 vulnerable ones.
Yeboah-Ofori, Abel, Ismail, Umar Mukhtar, Swidurski, Tymoteusz, Opoku-Boateng, Francisca.  2021.  Cyberattack Ontology: A Knowledge Representation for Cyber Supply Chain Security. 2021 International Conference on Computing, Computational Modelling and Applications (ICCMA). :65–70.
Cyberattacks on cyber supply chain (CSC) systems and the cascading impacts have brought many challenges and different threat levels with unpredictable consequences. The embedded networks nodes have various loopholes that could be exploited by the threat actors leading to various attacks, risks, and the threat of cascading attacks on the various systems. Key factors such as lack of common ontology vocabulary and semantic interoperability of cyberattack information, inadequate conceptualized ontology learning and hierarchical approach to representing the relationships in the CSC security domain has led to explicit knowledge representation. This paper explores cyberattack ontology learning to describe security concepts, properties and the relationships required to model security goal. Cyberattack ontology provides a semantic mapping between different organizational and vendor security goals has been inherently challenging. The contributions of this paper are threefold. First, we consider CSC security modelling such as goal, actor, attack, TTP, and requirements using semantic rules for logical representation. Secondly, we model a cyberattack ontology for semantic mapping and knowledge representation. Finally, we discuss concepts for threat intelligence and knowledge reuse. The results show that the cyberattack ontology concepts could be used to improve CSC security.