Biblio
This paper proposes an efficient auditing scheme for checking the integrity of dynamic data shared among a static group of users outsourced at untrusted cloud storage. The scheme is designed based on CDH-based ring signature scheme. The scheme enables a third party auditor to audit the client's data without knowing the content while also preserving the identity privacy of the group member who is signing the data from the auditor as well as from the cloud server. The identity of the group member who is signing the data block can be revealed only by the authorized opener, if needed. The paper presents a comparative performance study and security analysis of the proposed scheme.
Bitcoin is a decentralized digital currency, widely used for its perceived anonymity property, and has surged in popularity in recent years. Bitcoin publishes the complete transaction history in a public ledger, under pseudonyms of users. This is an alternative way to prevent double-spending attack instead of central authority. Therefore, if pseudonyms of users are attached to their identities in real world, the anonymity of Bitcoin will be a serious vulnerability. It is necessary to enhance anonymity of Bitcoin by a coin mixing service or other modifications in Bitcoin protocol. But in a coin mixing service, the relationship among input and output addresses is not hidden from the mixing service provider. So the mixing server still has the ability to track the transaction records of Bitcoin users. To solve this problem, We present a new coin mixing scheme to ensure that the relationship between input and output addresses of any users is invisible for the mixing server. We make use of a ring signature algorithm to ensure that the mixing server can't distinguish specific transaction from all these addresses. The ring signature ensures that a signature is signed by one of its users in the ring and doesn't leak any information about who signed it. Furthermore, the scheme is fully compatible with existing Bitcoin protocol and easily to scale for large amount of users.
Though anonymity of ring signature schemes has been studied in many literatures for a long time, these papers showed different definitions and there is no consensus. Recently, Bender et al. proposed two new anonymity definitions of ring signature which is stronger than the traditional definition, that are called anonymity against attribution attacks/full key exposure. Also, ring signature schemes have two levels of unforgeability definitions, i.e., existential un-forgeability (eUF) and strong existential unforgeability (sUF). In this paper, we will redefine anonymity and unforgeability definitions from the standpoint of universally composable (UC) security framework. First, we will formulate new ideal functionalities of ring signature schemes for each security levels separately. Next, we will show relations between cryptographic security definitions and our UC definitions. Finally, we will give another proof of the Bender et al.'s ring signature scheme following the UC secure definition by constructing a simulator to an adversary of sUF, which can be adaptable to the case of sUF under the assumption of a standard single sUF signature scheme.