Biblio
In quantum cryptography research area, quantum digital signature is an important research field. To provide a better privacy for users in constructing quantum digital signature, the stronger anonymity of quantum digital signatures is required. Quantum ring signature scheme focuses on anonymity in certain scenarios. Using quantum ring signature scheme, the quantum message signer hides his identity into a group. At the same time, there is no need for any centralized organization when the user uses the quantum ring signature scheme. The group used to hide the signer identity can be immediately selected by the signer himself, and no collaboration between users.Since the quantum finite automaton signature scheme is very efficient quantum digital signature scheme, based on it, we propose a new quantum ring signature scheme. We also showed that the new scheme we proposed is of feasibility, correctness, anonymity, and unforgeability. And furthermore, the new scheme can be implemented only by logical operations, so it is easy to implement.
Audit logs are widely used in information systems nowadays. In cloud computing and cloud storage environment, audit logs are required to be encrypted and outsourced on remote servers to protect the confidentiality of data and the privacy of users. The searchable encrypted audit logs support a search on the encrypted audit logs. In this paper, we propose a privacy-preserving and unforgeable searchable encrypted audit log scheme based on PEKS. Only the trusted data owner can generate encrypted audit logs containing access permissions for users. The semi-honest server verifies the audit logs in a searchable encryption way before granting the operation rights to users and storing the audit logs. The data owner can perform a fine-grained conjunctive query on the stored audit logs, and accept only the valid audit logs. The scheme is immune to the collusion tamper or fabrication conducted by server and user. Concrete implementations of the scheme is put forward in detail. The correct of the scheme is proved, and the security properties, such as privacy-preserving, searchability, verifiability and unforgeability are analyzed. Further evaluation of computation load shows that the design is of considerable efficiency.
Though anonymity of ring signature schemes has been studied in many literatures for a long time, these papers showed different definitions and there is no consensus. Recently, Bender et al. proposed two new anonymity definitions of ring signature which is stronger than the traditional definition, that are called anonymity against attribution attacks/full key exposure. Also, ring signature schemes have two levels of unforgeability definitions, i.e., existential un-forgeability (eUF) and strong existential unforgeability (sUF). In this paper, we will redefine anonymity and unforgeability definitions from the standpoint of universally composable (UC) security framework. First, we will formulate new ideal functionalities of ring signature schemes for each security levels separately. Next, we will show relations between cryptographic security definitions and our UC definitions. Finally, we will give another proof of the Bender et al.'s ring signature scheme following the UC secure definition by constructing a simulator to an adversary of sUF, which can be adaptable to the case of sUF under the assumption of a standard single sUF signature scheme.