Biblio
The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.
In this paper, we analyze the performance and cost trade-off from selecting two representations of nodes when implementing the Aho-Corasick algorithm. This algorithm can be used for pattern matching in network-based intrusion detection systems such as Snort. Our analysis uses the Snort 2.9.7 rules set, which contains almost 26k patterns. Our methodology consists of code profiling and analysis, followed by the selection of a parameter to maximize a metric that combines clock cycles count and memory usage. The parameter determines which of two types of nodes is selected for each trie node. We show that it is possible to select the parameter to optimize the metric, which results in an improvement by up to 12× compared with the single node-type case.