Biblio
Every day, huge amounts of unstructured text is getting generated. Most of this data is in the form of essays, research papers, patents, scholastic articles, book chapters etc. Many plagiarism softwares are being developed to be used in order to reduce the stealing and plagiarizing of Intellectual Property (IP). Current plagiarism softwares are mainly using string matching algorithms to detect copying of text from another source. The drawback of some of such plagiarism softwares is their inability to detect plagiarism when the structure of the sentence is changed. Replacement of keywords by their synonyms also fails to be detected by these softwares. This paper proposes a new method to detect such plagiarism using semantic knowledge graphs. The method uses Named Entity Recognition as well as semantic similarity between sentences to detect possible cases of plagiarism. The doubtful cases are visualized using semantic Knowledge Graphs for thorough analysis of authenticity. Rules for active and passive voice have also been considered in the proposed methodology.
Understanding the behavior of complex financial supply chains is usually difficult due to a lack of data capturing the interactions between financial institutions (FIs) and the roles that they play in financial contracts (FCs). resMBS is an example supply chain corresponding to the US residential mortgage backed securities that were critical in the 2008 US financial crisis. In this paper, we describe the process of creating the resMBS graph dataset from financial prospectus. We use the SystemT rule-based text extraction platform to develop two tools, ORG NER and Dict NER, for named entity recognition of financial institution (FI) names. The resMBS graph comprises a set of FC nodes (each prospectus) and the corresponding FI nodes that are extracted from the prospectus. A Role-FI extractor matches a role keyword such as originator, sponsor or servicer, with FI names. We study the performance of the Role-FI extractor, and ORG NER and Dict NER, in constructing the resMBS dataset. We also present preliminary results of a clustering based analysis to identify financial communities and their evolution in the resMBS financial supply chain.