Visible to the public Biblio

Filters: Keyword is 3PIP  [Clear All Filters]
2019-05-01
Gundabolu, S., Wang, X..  2018.  On-chip Data Security Against Untrustworthy Software and Hardware IPs in Embedded Systems. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :644–649.

State-of-the-art system-on-chip (SoC) field programmable gate arrays (FPGAs) integrate hard powerful ARM processor cores and the reconfigurable logic fabric on a single chip in addition to many commonly needed high performance and high-bandwidth peripherals. The increasing reliance on untrustworthy third-party IP (3PIP) cores, including both hardware and software in FPGA-based embedded systems has made the latter increasingly vulnerable to security attacks. Detection of trojans in 3PIPs is extremely difficult to current static detection methods since there is no golden reference model for 3PIPs. Moreover, many FPGA-based embedded systems do not have the support of security services typically found in operating systems. In this paper, we present our run-time, low-cost, and low-latency hardware and software based solution for protecting data stored in on-chip memory blocks, which has attracted little research attention. The implemented memory protection design consists of a hierarchical top-down structure and controls memory access from software IPs running on the processor and hardware IPs running in the FPGA, based on a set of rules or access rights configurable at run time. Additionally, virtual addressing and encryption of data for each memory help protect confidentiality of data in case of a failure of the memory protection unit, making it hard for the attacker to gain access to the data stored in the memory. The design is implemented and tested on the Intel (Altera) DE1-SoC board featuring a SoC FPGA that integrates a dual-core ARM processor with reconfigurable logic and hundreds of memory blocks. The experimental results and case studies show that the protection model is successful in eliminating malicious IPs from the system without need for reconfiguration of the FPGA. It prevents unauthorized accesses from untrusted IPs, while arbitrating access from trusted IPs generating legal memory requests, without incurring a serious area or latency penalty.

2017-05-17
Guin, Ujjwal, Shi, Qihang, Forte, Domenic, Tehranipoor, Mark M..  2016.  FORTIS: A Comprehensive Solution for Establishing Forward Trust for Protecting IPs and ICs. ACM Trans. Des. Autom. Electron. Syst.. 21:63:1–63:20.

With the advent of globalization in the semiconductor industry, it is necessary to prevent unauthorized usage of third-party IPs (3PIPs), cloning and unwanted modification of 3PIPs, and unauthorized production of ICs. Due to the increasing complexity of ICs, system-on-chip (SoC) designers use various 3PIPs in their design to reduce time-to-market and development costs, which creates a trust issue between the SoC designer and the IP owners. In addition, as the ICs are fabricated around the globe, the SoC designers give fabrication contracts to offshore foundries to manufacture ICs and have little control over the fabrication process, including the total number of chips fabricated. Similarly, the 3PIP owners lack control over the number of fabricated chips and/or the usage of their IPs in an SoC. Existing research only partially addresses the problems of IP piracy and IC overproduction, and to the best of our knowledge, there is no work that considers IP overuse. In this article, we present a comprehensive solution for preventing IP piracy and IC overproduction by assuring forward trust between all entities involved in the SoC design and fabrication process. We propose a novel design flow to prevent IC overproduction and IP overuse. We use an existing logic encryption technique to obfuscate the netlist of an SoC or a 3PIP and propose a modification to enable manufacturing tests before the activation of chips which is absolutely necessary to prevent overproduction. We have used asymmetric and symmetric key encryption, in a fashion similar to Pretty Good Privacy (PGP), to transfer keys from the SoC designer or 3PIP owners to the chips. In addition, we also propose to attach an IP digest (a cryptographic hash of the entire IP) to the header of an IP to prevent modification of the IP by the SoC designers. We have shown that our approach is resistant to various attacks with the cost of minimal area overhead.