Biblio
Active Noise Cancellation (ANC) is a classical area where noise in the environment is canceled by producing anti-noise signals near the human ears (e.g., in Bose's noise cancellation headphones). This paper brings IoT to active noise cancellation by combining wireless communication with acoustics. The core idea is to place an IoT device in the environment that listens to ambient sounds and forwards the sound over its wireless radio. Since wireless signals travel much faster than sound, our ear-device receives the sound in advance of its actual arrival. This serves as a glimpse into the future, that we call lookahead, and proves crucial for real-time noise cancellation, especially for unpredictable, wide-band sounds like music and speech. Using custom IoT hardware, as well as lookahead-aware cancellation algorithms, we demonstrate MUTE, a fully functional noise cancellation prototype that outperforms Bose's latest ANC headphone. Importantly, our design does not need to block the ear - the ear canal remains open, making it comfortable (and healthier) for continuous use.
The majority of available wearable computing devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, many wearables are equipped with WiFi network interfaces, enabling direct communication with the Internet. Secure communication protocols could then run on these wearables themselves, yet it is not clear if they can be efficiently supported.,,,,In this paper, we show that wearables are ready for direct and secure Internet communication by means of experiments with both controlled local web servers and Internet servers. We observe that the overall energy consumption and communication delay can be reduced with direct Internet connection via WiFi from wearables compared to using smartphones as relays via Bluetooth. We also show that the additional HTTPS cost caused by TLS handshake and encryption is closely related to the number of parallel connections, and has the same relative impact on wearables and smartphones.
In this demo, we will display a smartphone authentication system that can automatically validate every touch interaction made on a smartphone using a smart watch worn by the phone's owner. The IMU sensors on a smart watch monitor the motion of the hand for specific signal characteristics, which is relayed to the phone. If the signal features match certain criteria then the touch is authenticated and the phone responds appropriately. If not, the phone's screen remains locked/unresponsive to the touch action. The challenge here is to be able to validate every touch gesture within acceptable limits of human perception.
Bluetooth reliant devices are increasingly proliferating into various industry and consumer sectors as part of a burgeoning wearable market that adds convenience and awareness to everyday life. Relying primarily on a constantly changing hop pattern to reduce data sniffing during transmission, wearable devices routinely disconnect and reconnect with their base station (typically a cell phone), causing a connection repair each time. These connection repairs allow an adversary to determine what local wearable devices are communicating to what base stations. In addition, data transmitted to a base station as part of a wearable app may be forwarded onward to an awaiting web API even if the base station is in an insecure environment (e.g. a public Wi-Fi). In this paper, we introduce an approach to increase the security and privacy associated with using wearable devices by imposing transmission changes given situational awareness of the base station. These changes are asserted via policy rules based on the sensor information from the wearable devices collected and aggregated by the base system. The rules are housed in an application on the base station that adapts the base station to a state in which it prevents data from being transmitted by the wearable devices without disconnecting the devices. The policies can be updated manually or through an over the air update as determined by the user.
There has been a tremendous increase in popularity and adoption of wearable fitness trackers. These fitness trackers predominantly use Bluetooth Low Energy (BLE) for communicating and syncing the data with user's smartphone. This paper presents a measurement-driven study of possible privacy leakage from BLE communication between the fitness tracker and the smartphone. Using real BLE traffic traces collected in the wild and in controlled experiments, we show that majority of the fitness trackers use unchanged BLE address while advertising, making it feasible to track them. The BLE traffic of the fitness trackers is found to be correlated with the intensity of user's activity, making it possible for an eavesdropper to determine user's current activity (walking, sitting, idle or running) through BLE traffic analysis. Furthermore, we also demonstrate that the BLE traffic can represent user's gait which is known to be distinct from user to user. This makes it possible to identify a person (from a small group of users) based on the BLE traffic of her fitness tracker. As BLE-based wearable fitness trackers become widely adopted, our aim is to identify important privacy implications of their usage and discuss prevention strategies.