Visible to the public Biblio

Filters: Keyword is context awareness  [Clear All Filters]
2023-02-03
Revathi, K., Tamilselvi, T., Tamilselvi, K., Shanthakumar, P., Samydurai, A..  2022.  Context Aware Fog-Assisted Vital Sign Monitoring System: Design and Implementation. 2022 International Conference on Edge Computing and Applications (ICECAA). :108–112.
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
2021-07-07
G H, Samyama Gunjal, Swamy, Samarth C.  2020.  A Security Approach to Build a Trustworthy Ubiquitous Learning System. 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC). :1–6.
Modern learning systems, say a tutoring platform, has many characteristics like digital data presentation with interactivity, mobility, which provides information about the study-content as per the learners understanding levels, intelligent learners behavior, etc. A sophisticated ubiquitous learner system maintains security and monitors the mischievous behavior of the learner, and authenticates and authorizes every learner, which is quintessential. Some of the existing security schemes aim only at single entry-point authentication, which may not suit to ubiquitous tutor platform. We propose a secured authentication scheme which is based on the information utility of the learner. Whenever a learner moves into a tutor platform, which has ubiquitous learner system technology, the system at first-begins with learners' identity authentication, and then it initiates trust evaluation after the successful authentication of the learner. Periodic credential verification of the learner will be carried out, which intensifies the authentication scheme of the system proposed. BAN logic has been used to prove the authentication in this system. The proposed authentication scheme has been simulated and analyzed for the indoor tutor platform environment.
Jose, Sanjana Elsa, Nayana, P V, Nair, Nima S.  2020.  The Enforcement of Context Aware System Security Protocols with the Aid of Multi Factor Authentication. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :740–744.
In this paper, an attempt has been made to describe Kerberos authentication with multi factor authentication in context aware systems. Multi factor authentication will make the framework increasingly secure and dependable. The Kerberos convention is one of the most generally utilized security conventions on the planet. The security conventions of Kerberos have been around for a considerable length of time for programmers and other malware to Figure out how to sidestep it. This has required a quick support of the Kerberos convention to make it progressively dependable and productive. Right now, endeavor to help explain this by strengthening Kerberos with the assistance of multifaceted verification.
2020-04-03
Lachner, Clemens, Rausch, Thomas, Dustdar, Schahram.  2019.  Context-Aware Enforcement of Privacy Policies in Edge Computing. 2019 IEEE International Congress on Big Data (BigDataCongress). :1—6.
Privacy is a fundamental concern that confronts systems dealing with sensitive data. The lack of robust solutions for defining and enforcing privacy measures continues to hinder the general acceptance and adoption of these systems. Edge computing has been recognized as a key enabler for privacy enhanced applications, and has opened new opportunities. In this paper, we propose a novel privacy model based on context-aware edge computing. Our model leverages the context of data to make decisions about how these data need to be processed and managed to achieve privacy. Based on a scenario from the eHealth domain, we show how our generalized model can be used to implement and enact complex domain-specific privacy policies. We illustrate our approach by constructing real world use cases involving a mobile Electronic Health Record that interacts with, and in different environments.
2018-03-19
Harb, H., William, A., El-Mohsen, O. A., Mansour, H. A..  2017.  Multicast Security Model for Internet of Things Based on Context Awareness. 2017 13th International Computer Engineering Conference (ICENCO). :303–309.

Internet of Things (IoT) devices are resource constrained devices in terms of power, memory, bandwidth, and processing. On the other hand, multicast communication is considered more efficient in group oriented applications compared to unicast communication as transmission takes place using fewer resources. That is why many of IoT applications rely on multicast in their transmission. This multicast traffic need to be secured specially for critical applications involving actuators control. Securing multicast traffic by itself is cumbersome as it requires an efficient and scalable Group Key Management (GKM) protocol. In case of IoT, the situation is more difficult because of the dynamic nature of IoT scenarios. This paper introduces a solution based on using context aware security server accompanied with a group of key servers to efficiently distribute group encryption keys to IoT devices in order to secure the multicast sessions. The proposed solution is evaluated relative to the Logical Key Hierarchy (LKH) protocol. The comparison shows that the proposed scheme efficiently reduces the load on the key servers. Moreover, the key storage cost on both members and key servers is reduced.

2017-05-17
Oluwatimi, Oyindamola, Midi, Daniele, Bertino, Elisa.  2016.  A Context-Aware System to Secure Enterprise Content. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :63–72.

In this paper, we present an architecture and implementation of a secure, automated, proximity-based access control that we refer to as Context-Aware System to Secure Enterprise Content (CASSEC). Using the pervasive WiFi and Bluetooth wireless devices as components in our underlying positioning infrastructure, CASSEC addresses two proximity-based scenarios often encountered in enterprise environments: Separation of Duty and Absence of Other Users. The first scenario is achieved by using Bluetooth MAC addresses of nearby occupants as authentication tokens. The second scenario exploits the interference of WiFi received signal strength when an occupant crosses the line of sight (LOS). Regardless of the scenario, information about the occupancy of a particular location is periodically extracted to support continuous authentication. To the best of our knowledge, our approach is the first to incorporate WiFi signal interference caused by occupants as part of proximity-based access control system. Our results demonstrate that it is feasible to achieve great accuracy in localization of occupants in a monitored room.