Visible to the public Biblio

Filters: Keyword is automotive cybersecurity  [Clear All Filters]
2021-03-17
Lee, Y., Woo, S., Song, Y., Lee, J., Lee, D. H..  2020.  Practical Vulnerability-Information-Sharing Architecture for Automotive Security-Risk Analysis. IEEE Access. 8:120009—120018.
Emerging trends that are shaping the future of the automotive industry include electrification, autonomous driving, sharing, and connectivity, and these trends keep changing annually. Thus, the automotive industry is shifting from mechanical devices to electronic control devices, and is not moving to Internet of Things devices connected to 5G networks. Owing to the convergence of automobile-information and communication technology (ICT), the safety and convenience features of automobiles have improved significantly. However, cyberattacks that occur in the existing ICT environment and can occur in the upcoming 5G network are being replicated in the automobile environment. In a hyper-connected society where 5G networks are commercially available, automotive security is extremely important, as vehicles become the center of vehicle to everything (V2X) communication connected to everything around them. Designing, developing, and deploying information security techniques for vehicles require a systematic security-risk-assessment and management process throughout the vehicle's lifecycle. To do this, a security risk analysis (SRA) must be performed, which requires an analysis of cyber threats on automotive vehicles. In this study, we introduce a cyber kill chain-based cyberattack analysis method to create a formal vulnerability-analysis system. We can also analyze car-hacking studies that were conducted on real cars to identify the characteristics of the attack stages of existing car-hacking techniques and propose the minimum but essential measures for defense. Finally, we propose an automotive common-vulnerabilities-and-exposure system to manage and share evolving vehicle-related cyberattacks, threats, and vulnerabilities.
2020-08-28
Brewer, John N., Dimitoglou, George.  2019.  Evaluation of Attack Vectors and Risks in Automobiles and Road Infrastructure. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :84—89.

The evolution of smart automobiles and vehicles within the Internet of Things (IoT) - particularly as that evolution leads toward a proliferation of completely autonomous vehicles - has sparked considerable interest in the subject of vehicle/automotive security. While the attack surface is wide, there are patterns of exploitable vulnerabilities. In this study we reviewed, classified according to their attack surface and evaluated some of the common vehicle and infrastructure attack vectors identified in the literature. To remediate these attack vectors, specific technical recommendations have been provided as a way towards secure deployments of smart automobiles and transportation infrastructures.

2020-07-27
Liem, Clifford, Murdock, Dan, Williams, Andrew, Soukup, Martin.  2019.  Highly Available, Self-Defending, and Malicious Fault-Tolerant Systems for Automotive Cybersecurity. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :24–27.
With the growing number of electronic features in cars and their connections to the cloud, smartphones, road-side equipment, and neighboring cars the need for effective cybersecurity is paramount. Beyond the concern of brand degradation, warranty fraud, and recalls, what keeps manufacturers up at night is the threat of malicious attacks which can affect the safety of vehicles on the road. Would any single protection technique provide the security needed over the long lifetime of a vehicle? We present a new methodology for automotive cybersecurity where the designs are made to withstand attacks in the future based on the concepts of high availability and malicious fault-tolerance through self-defending techniques. When a system has an intrusion, self-defending technologies work to contain the breach using integrity verification, self-healing, and fail-over techniques to keep the system running.
2020-07-20
Hayward, Jake, Tomlinson, Andrew, Bryans, Jeremy.  2019.  Adding Cyberattacks To An Industry-Leading CAN Simulator. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :9–16.
Recent years have seen an increase in the data usage in cars, particularly as they become more autonomous and connected. With the rise in data use have come concerns about automotive cyber-security. An in-vehicle network shown to be particularly vulnerable is the Controller Area Network (CAN), which is the communication bus used by the car's safety critical and performance critical components. Cyber attacks on the CAN have been demonstrated, leading to research to develop attack detection and attack prevention systems. Such research requires representative attack demonstrations and data for testing. Obtaining this data is problematical due to the expense, danger and impracticality of using real cars on roads or tracks for example attacks. Whilst CAN simulators are available, these tend to be configured for testing conformance and functionality, rather than analysing security and cyber vulnerability. We therefore adapt a leading, industry-standard, CAN simulator to incorporate a core set of cyber attacks that are representative of those proposed by other researchers. Our adaptation allows the user to configure the attacks, and can be added easily to the free version of the simulator. Here we describe the simulator and, after reviewing the attacks that have been demonstrated and discussing their commonalities, we outline the attacks that we have incorporated into the simulator.
2020-01-21
Oruganti, Pradeep Sharma, Appel, Matt, Ahmed, Qadeer.  2019.  Hardware-in-Loop Based Automotive Embedded Systems Cybersecurity Evaluation Testbed. Proceedings of the ACM Workshop on Automotive Cybersecurity. :41–44.
This paper explains the work-in-progress on a vehicle safety and security evaluation platform. Since the testing of cyber-attacks on an actual may be costly or dangerous, the platform enables us to evaluate the threat and the risk associated with cyber-attacks in a safe virtual environment. The goal is to integrate vehicle and powertrain models, mobility and network simulators to actual hardware running the control algorithms using CAN communication. Hardware is selected so as to allows expandability and application of wireless modules which will act as additional attack surfaces. In the current paper, the framework and ideology behind is testbed is described and current progress is shown. A simple GPS spoofing attack on a virtual test vehicle is done and some initial results are discussed.
2017-05-17
Cho, Kyong-Tak, Shin, Kang G..  2016.  Error Handling of In-vehicle Networks Makes Them Vulnerable. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1044–1055.

Contemporary vehicles are getting equipped with an increasing number of Electronic Control Units (ECUs) and wireless connectivities. Although these have enhanced vehicle safety and efficiency, they are accompanied with new vulnerabilities. In this paper, we unveil a new important vulnerability applicable to several in-vehicle networks including Control Area Network (CAN), the de facto standard in-vehicle network protocol. Specifically, we propose a new type of Denial-of-Service (DoS), called the bus-off attack, which exploits the error-handling scheme of in-vehicle networks to disconnect or shut down good/uncompromised ECUs. This is an important attack that must be thwarted, since the attack, once an ECU is compromised, is easy to be mounted on safety-critical ECUs while its prevention is very difficult. In addition to the discovery of this new vulnerability, we analyze its feasibility using actual in-vehicle network traffic, and demonstrate the attack on a CAN bus prototype as well as on two real vehicles. Based on our analysis and experimental results, we also propose and evaluate a mechanism to detect and prevent the bus-off attack.