Biblio
The security of current key exchange protocols such as Diffie-Hellman key exchange is based on the hardness of number theoretic problems. However, these key exchange protocols are threatened by weak random number generators, advances to CPU power, a new attack from the eavesdropper, and the emergence of a quantum computer. Quantum Key Distribution (QKD) addresses these challenges by using quantum properties to exchange a secret key without the risk of being intercepted. Recent developments on the QKD system resulted in a stable key generation with fewer errors so that the QKD system is rapidly becoming a solid commercial proposition. However, although the security of the QKD system is guaranteed by quantum physics, its careless implementation could make the system vulnerable. In this paper, we proposed the first side-channel attack on plug-and-play QKD system. Through a single electromagnetic trace obtained from the phase modulator on Alice's side, we were able to classify the electromagnetic trace into four classes, which corresponds to the number of bit and basis combination in the BB84 protocol. We concluded that the plug-and-play QKD system is vulnerable to side-channel attack so that the countermeasure must be considered.
Most mobile applications generate local data on internal memory with SharedPreference interface of an Android operating system. Therefore, many possible loopholes can access the confidential information such as passwords. We propose a hybrid encryption approach for SharedPreferences to protect the leaking confidential information through the source code. We develop an Android application and store some data using SharedPreference. We produce different experiments with which this data could be accessed. We apply Hybrid encryption approach combining encryption approach with Android Keystore system, for providing better encryption algorithm to hide sensitive data.
With the development of cyber threats on the Internet, the number of malware, especially unknown malware, is also dramatically increasing. Since all of malware cannot be analyzed by analysts, it is very important to find out new malware that should be analyzed by them. In order to cope with this issue, the existing approaches focused on malware classification using static or dynamic analysis results of malware. However, the static and the dynamic analyses themselves are also too costly and not easy to build the isolated, secure and Internet-like analysis environments such as sandbox. In this paper, we propose a lightweight malware classification method based on detection results of anti-virus software. Since the proposed method can reduce the volume of malware that should be analyzed by analysts, it can be used as a preprocess for in-depth analysis of malware. The experimental showed that the proposed method succeeded in classification of 1,000 malware samples into 187 unique groups. This means that 81% of the original malware samples do not need to analyze by analysts.
This paper presents an efficiency and adaptive cryptographic protocol to ensure users' privacy and data integrity in RFID system. Radio Frequency Identification technology offers more intelligent systems and applications, but privacy and security issues have to be addressed before and after its adoption. The design of the proposed model is based on clustering configuration of the involved tags where they interchange the data with the reader whenever it sends a request. This scheme provides a strong mutual authentication framework that suits for real heterogeneous RFID applications such as in supply-chain management systems, healthcare monitoring and industrial environment. In addition, we contribute with a mathematical analysis to the delay analysis and optimization in a clustering topology tag-based. Finally, a formal security and proof analysis is demonstrated to prove the effectiveness of the proposed protocol and that achieves security and privacy.