Biblio
The performance, dependability, and security of cloud service systems are vital for the ongoing operation, control, and support. Thus, controlled improvement in service requires a comprehensive analysis and systematic identification of the fundamental underlying constituents of cloud using a rigorous discipline. In this paper, we introduce a framework which helps identifying areas for potential cloud service enhancements. A cloud service cannot be completed if there is a failure in any of its underlying resources. In addition, resources are kept offline for scheduled maintenance. We use redundant resources to mitigate the impact of failures/maintenance for ensuring performance and dependability; which helps enhancing security as well. For example, at least 4 replicas are required to defend the intrusion of a single instance or a single malicious attack/fault as defined by Byzantine Fault Tolerance (BFT). Data centers with high performance, dependability, and security are outsourced to the cloud computing environment with greater flexibility of cost of owing the computing infrastructure. In this paper, we analyze the effectiveness of redundant resource usage in terms of dependability metric and cost of service deployment based on the priority of service requests. The trade-off among dependability, cost, and security under different redundancy schemes are characterized through the comprehensive analytical models.
The surprising success of cryptocurrencies has led to a surge of interest in deploying large scale, highly robust, Byzantine fault tolerant (BFT) protocols for mission-critical applications, such as financial transactions. Although the conventional wisdom is to build atop a (weakly) synchronous protocol such as PBFT (or a variation thereof), such protocols rely critically on network timing assumptions, and only guarantee liveness when the network behaves as expected. We argue these protocols are ill-suited for this deployment scenario. We present an alternative, HoneyBadgerBFT, the first practical asynchronous BFT protocol, which guarantees liveness without making any timing assumptions. We base our solution on a novel atomic broadcast protocol that achieves optimal asymptotic efficiency. We present an implementation and experimental results to show our system can achieve throughput of tens of thousands of transactions per second, and scales to over a hundred nodes on a wide area network. We even conduct BFT experiments over Tor, without needing to tune any parameters. Unlike the alternatives, HoneyBadgerBFT simply does not care about the underlying network.