Visible to the public Biblio

Filters: Keyword is network flows  [Clear All Filters]
2021-02-10
Gomes, G., Dias, L., Correia, M..  2020.  CryingJackpot: Network Flows and Performance Counters against Cryptojacking. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—10.
Cryptojacking, the appropriation of users' computational resources without their knowledge or consent to obtain cryp-tocurrencies, is a widespread attack, relatively easy to implement and hard to detect. Either browser-based or binary, cryptojacking lacks robust and reliable detection solutions. This paper presents a hybrid approach to detect cryptojacking where no previous knowledge about the attacks or training data is needed. Our Cryp-tojacking Intrusion Detection Approach, Cryingjackpot, extracts and combines flow and performance counter-based features, aggregating hosts with similar behavior by using unsupervised machine learning algorithms. We evaluate Cryingjackpot experimentally with both an artificial and a hybrid dataset, achieving F1-scores up to 97%.
2021-01-11
Khandait, P., Hubballi, N., Mazumdar, B..  2020.  Efficient Keyword Matching for Deep Packet Inspection based Network Traffic Classification. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :567–570.
Network traffic classification has a range of applications in network management including QoS and security monitoring. Deep Packet Inspection (DPI) is one of the effective method used for traffic classification. DPI is computationally expensive operation involving string matching between payload and application signatures. Existing traffic classification techniques perform multiple scans of payload to classify the application flows - first scan to extract the words and the second scan to match the words with application signatures. In this paper we propose an approach which can classify network flows with single scan of flow payloads using a heuristic method to achieve a sub-linear search complexity. The idea is to scan few initial bytes of payload and determine potential application signature(s) for subsequent signature matching. We perform experiments with a large dataset containing 171873 network flows and show that it has a good classification accuracy of 98%.
2020-09-04
Velan, Petr, Husák, Martin, Tovarňák, Daniel.  2018.  Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.
2020-08-17
Yao, Yepeng, Su, Liya, Lu, Zhigang, Liu, Baoxu.  2019.  STDeepGraph: Spatial-Temporal Deep Learning on Communication Graphs for Long-Term Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :120–127.
Network communication data are high-dimensional and spatiotemporal, and their information content is often degraded by common traffic analysis methods. For long-term network attack detection based on network flows, it is important to extract a discriminative, high-dimensional intrinsic representation of such flows. This work focuses on a hybrid deep neural network design using a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) with graph similarity measures to learn high-dimensional representations from the network traffic. In particular, examining a set of network flows, we commence by constructing a temporal communication graph and then computing graph kernel matrices. Having obtained the kernel matrices, for each graph, we use the kernel value between graphs and calculate graph characterization vectors by graph signal processing. This vector can be regarded as a kernel-based similarity embedding vector of the graph that integrates structural similarity information and leverages efficient graph kernel using the graph Laplacian matrix. Our approach exploits graph structures as the additional prior information, the graph Laplacian matrix for feature extraction and hybrid deep learning models for long-term information learning on communication graphs. Experiments on two real-world network attack datasets show that our approach can extract more discriminative representations, leading to an improved accuracy in a supervised classification task. The experimental results show that our method increases the overall accuracy by approximately 10%-15%.
2020-05-11
Ma, Yuxiang, Wu, Yulei, Ge, Jingguo, Li, Jun.  2018.  A Flow-Level Architecture for Balancing Accountability and Privacy. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :984–989.
With the rapid development of the Internet, flow-based approach has attracted more and more attention. To this end, this paper presents a new and efficient architecture to balance accountability and privacy based on network flows. A self-certifying identifier is proposed to efficiently identify a flow. In addition, a delegate-registry cooperation scheme and a multi-delegate mechanism are developed to ensure users' privacy. The effectiveness and overhead of the proposed architecture are evaluated by virtue of the real trace collected from an Internet service provider. The experimental results show that our architecture can achieve a better network performance in terms of lower resource consumption, lower response time, and higher stability.
2015-04-30
Lee, P., Clark, A., Bushnell, L., Poovendran, R..  2014.  A Passivity Framework for Modeling and Mitigating Wormhole Attacks on Networked Control Systems. Automatic Control, IEEE Transactions on. 59:3224-3237.

Networked control systems consist of distributed sensors and actuators that communicate via a wireless network. The use of an open wireless medium and unattended deployment leaves these systems vulnerable to intelligent adversaries whose goal is to disrupt the system performance. In this paper, we study the wormhole attack on a networked control system, in which an adversary establishes a link between two geographically distant regions of the network by using either high-gain antennas, as in the out-of-band wormhole, or colluding network nodes as in the in-band wormhole. Wormholes allow the adversary to violate the timing constraints of real-time control systems by first creating low-latency links, which attract network traffic, and then delaying or dropping packets. Since the wormhole attack reroutes and replays valid messages, it cannot be detected using cryptographic mechanisms alone. We study the impact of the wormhole attack on the network flows and delays and introduce a passivity-based control-theoretic framework for modeling and mitigating the wormhole attack. We develop this framework for both the in-band and out-of-band wormhole attacks as well as complex, hereto-unreported wormhole attacks consisting of arbitrary combinations of in-and out-of band wormholes. By integrating existing mitigation strategies into our framework, we analyze the throughput, delay, and stability properties of the overall system. Through simulation study, we show that, by selectively dropping control packets, the wormhole attack can cause disturbances in the physical plant of a networked control system, and demonstrate that appropriate selection of detection parameters mitigates the disturbances due to the wormhole while satisfying the delay constraints of the physical system.

Lee, P., Clark, A., Bushnell, L., Poovendran, R..  2014.  A Passivity Framework for Modeling and Mitigating Wormhole Attacks on Networked Control Systems. Automatic Control, IEEE Transactions on. 59:3224-3237.

Networked control systems consist of distributed sensors and actuators that communicate via a wireless network. The use of an open wireless medium and unattended deployment leaves these systems vulnerable to intelligent adversaries whose goal is to disrupt the system performance. In this paper, we study the wormhole attack on a networked control system, in which an adversary establishes a link between two geographically distant regions of the network by using either high-gain antennas, as in the out-of-band wormhole, or colluding network nodes as in the in-band wormhole. Wormholes allow the adversary to violate the timing constraints of real-time control systems by first creating low-latency links, which attract network traffic, and then delaying or dropping packets. Since the wormhole attack reroutes and replays valid messages, it cannot be detected using cryptographic mechanisms alone. We study the impact of the wormhole attack on the network flows and delays and introduce a passivity-based control-theoretic framework for modeling and mitigating the wormhole attack. We develop this framework for both the in-band and out-of-band wormhole attacks as well as complex, hereto-unreported wormhole attacks consisting of arbitrary combinations of in-and out-of band wormholes. By integrating existing mitigation strategies into our framework, we analyze the throughput, delay, and stability properties of the overall system. Through simulation study, we show that, by selectively dropping control packets, the wormhole attack can cause disturbances in the physical plant of a networked control system, and demonstrate that appropriate selection of detection parameters mitigates the disturbances due to the wormhole while satisfying the delay constraints of the physical system.