Visible to the public Biblio

Filters: Keyword is graphs  [Clear All Filters]
2021-04-09
Lyshevski, S. E., Aved, A., Morrone, P..  2020.  Information-Centric Cyberattack Analysis and Spatiotemporal Networks Applied to Cyber-Physical Systems. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:172—177.

Cyber-physical systems (CPS) depend on cybersecurity to ensure functionality, data quality, cyberattack resilience, etc. There are known and unknown cyber threats and attacks that pose significant risks. Information assurance and information security are critical. Many systems are vulnerable to intelligence exploitation and cyberattacks. By investigating cybersecurity risks and formal representation of CPS using spatiotemporal dynamic graphs and networks, this paper investigates topics and solutions aimed to examine and empower: (1) Cybersecurity capabilities; (2) Information assurance and system vulnerabilities; (3) Detection of cyber threat and attacks; (4) Situational awareness; etc. We introduce statistically-characterized dynamic graphs, novel entropy-centric algorithms and calculi which promise to ensure near-real-time capabilities.

2019-06-10
Mpanti, Anna, Nikolopoulos, Stavros D., Polenakis, Iosif.  2018.  A Graph-Based Model for Malicious Software Detection Exploiting Domination Relations Between System-Call Groups. Proceedings of the 19th International Conference on Computer Systems and Technologies. :20-26.

In this paper, we propose a graph-based algorithmic technique for malware detection, utilizing the System-call Dependency Graphs (ScDG) obtained through taint analysis traces. We leverage the grouping of system-calls into system-call groups with respect to their functionality to merge disjoint vertices of ScDG graphs, transforming them to Group Relation Graphs (GrG); note that, the GrG graphs represent malware's behavior being hence more resilient to probable mutations of its structure. More precisely, we extend the use of GrG graphs by mapping their vertices on the plane utilizing the degrees and the vertex-weights of a specific underlying graph of the GrG graph as to compute domination relations. Furthermore, we investigate how the activity of each system-call group could be utilized in order to distinguish graph-representations of malware and benign software. The domination relations among the vertices of GrG graphs result to a new graph representation that we call Coverage Graph of the GrG graph. Finally, we evaluate the potentials of our detection model using graph similarity between Coverage Graphs of known malicious and benign software samples of various types.

2018-09-28
Malloy, Matthew, Barford, Paul, Alp, Enis Ceyhun, Koller, Jonathan, Jewell, Adria.  2017.  Internet Device Graphs. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1913–1921.
Internet device graphs identify relationships between user-centric internet connected devices such as desktops, laptops, smartphones, tablets, gaming consoles, TV's, etc. The ability to create such graphs is compelling for online advertising, content customization, recommendation systems, security, and operations. We begin by describing an algorithm for generating a device graph based on IP-colocation, and then apply the algorithm to a corpus of over 2.5 trillion internet events collected over the period of six weeks in the United States. The resulting graph exhibits immense scale with greater than 7.3 billion edges (pair-wise relationships) between more than 1.2 billion nodes (devices), accounting for the vast majority of internet connected devices in the US. Next, we apply community detection algorithms to the graph resulting in a partitioning of internet devices into 100 million small communities representing physical households. We validate this partition with a unique ground truth dataset. We report on the characteristics of the graph and the communities. Lastly, we discuss the important issues of ethics and privacy that must be considered when creating and studying device graphs, and suggest further opportunities for device graph enrichment and application.
2017-05-18
Musto, Cataldo, Lops, Pasquale, Basile, Pierpaolo, de Gemmis, Marco, Semeraro, Giovanni.  2016.  Semantics-aware Graph-based Recommender Systems Exploiting Linked Open Data. Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. :229–237.

The ever increasing interest in semantic technologies and the availability of several open knowledge sources have fueled recent progress in the field of recommender systems. In this paper we feed recommender systems with features coming from the Linked Open Data (LOD) cloud - a huge amount of machine-readable knowledge encoded as RDF statements - with the aim of improving recommender systems effectiveness. In order to exploit the natural graph-based structure of RDF data, we study the impact of the knowledge coming from the LOD cloud on the overall performance of a graph-based recommendation algorithm. In more detail, we investigate whether the integration of LOD-based features improves the effectiveness of the algorithm and to what extent the choice of different feature selection techniques influences its performance in terms of accuracy and diversity. The experimental evaluation on two state of the art datasets shows a clear correlation between the feature selection technique and the ability of the algorithm to maximize a specific evaluation metric. Moreover, the graph-based algorithm leveraging LOD-based features is able to overcome several state of the art baselines, such as collaborative filtering and matrix factorization, thus confirming the effectiveness of the proposed approach.