Visible to the public Biblio

Found 402 results

Filters: Keyword is Routing  [Clear All Filters]
2019-02-08
Geyer, Fabien, Carle, Georg.  2018.  Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning. Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. :40-45.

Automated network control and management has been a long standing target of network protocols. We address in this paper the question of automated protocol design, where distributed networked nodes have to cooperate to achieve a common goal without a priori knowledge on which information to exchange or the network topology. While reinforcement learning has often been proposed for this task, we propose here to apply recent methods from semi-supervised deep neural networks which are focused on graphs. Our main contribution is an approach for applying graph-based deep learning on distributed routing protocols via a novel neural network architecture named Graph-Query Neural Network. We apply our approach to the tasks of shortest path and max-min routing. We evaluate the learned protocols in cold-start and also in case of topology changes. Numerical results show that our approach is able to automatically develop efficient routing protocols for those two use-cases with accuracies larger than 95%. We also show that specific properties of network protocols, such as resilience to packet loss, can be explicitly included in the learned protocol.

2019-01-21
Sangeetha, V., Kumar, S. S..  2018.  Detection of malicious node in mobile ad-hoc network. 2018 International Conference on Power, Signals, Control and Computation (EPSCICON). :1–3.

In recent years, the area of Mobile Ad-hoc Net-work(MANET) has received considerable attention among the research community owing to the advantages in its networking features as well as solving the unsolved issues in it. One field which needs more security is the mobile ad hoc network. Mobile Ad-hoc Network is a temporary network composed of mobile nodes, connected by wireless links, without fixed infrastructure. Network security plays a crucial role in this MANET and the traditional way of protecting the networks through firewalls and encryption software is no longer effective and sufficient. In order to provide additional security to the MANET, intrusion detection mechanisms should be added. In this paper, selective acknowledgment is used for detecting malicious nodes in the Mobile ad-hoc network is proposed. In this paper we propose a novel mechanism called selective acknowledgment for solving problems that airse with Adaptive ACKnowledgment (AACK). This mechanism is an enhancement to the AACK scheme where its Packet delivery ration and detection overhead is reduced. NS2 is used to simulate and evaluate the proposed scheme and compare it against the AACK. The obtained results show that the selective acknowledgment scheme outperforms AACK in terms of network packet delivery ratio and routing overhead.

2019-01-16
Choudhary, S., Kesswani, N..  2018.  Detection and Prevention of Routing Attacks in Internet of Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1537–1540.

Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.

Sahay, R., Geethakumari, G., Modugu, K..  2018.  Attack graph — Based vulnerability assessment of rank property in RPL-6LOWPAN in IoT. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :308–313.

A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.

Shirbhate, M. D., Solapure, S. S..  2018.  Improving existing 6LoWPAN RPL for content based routing. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :632–635.

Internet of things has become a subject of interest across a different industry domain. It includes 6LoWPAN (Low-Power Wireless Personal Area Network) which is used for a variety of application including home automation, sensor networks, manufacturing and industry application etc. However, gathering such a huge amount of data from such a different domain causes a problem of traffic congestion, high reliability, high energy efficiency etc. In order to address such problems, content based routing (CBR) technique is proposed, where routing paths are decided according to the type of content. By routing the correlated data to hop nodes for processing, a higher data aggregation ratio can be obtained, which in turns reducing the traffic congestion and minimizes the energy consumption. CBR is implemented on top of existing RPL (Routing Protocol for Low Power and Lossy network) and implemented in contiki operating system using cooja simulator. The analysis are carried out on the basis average power consumption, packet delivery ratio etc.

Hossain, M., Xie, J..  2018.  Off-sensing and Route Manipulation Attack: A Cross-Layer Attack in Cognitive Radio based Wireless Mesh Networks. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1376–1384.
Cognitive Radio (CR) has garnered much attention in the last decade, while the security issues are not fully studied yet. Existing research on attacks and defenses in CR - based networks focuses mostly on individual network layers, whereas cross-layer attacks remain fortified against single-layer defenses. In this paper, we shed light on a new vulnerability in cross-layer routing protocols and demonstrate how a perpetrator can exploit this vulnerability to manipulate traffic flow around it. We propose this cross-layer attack in CR-based wireless mesh networks (CR-WMNs), which we call off-sensing and route manipulation (OS-RM) attack. In this cross-layer assault, off-sensing attack is launched at the lower layers as the point of attack but the final intention is to manipulate traffic flow around the perpetrator. We also introduce a learning strategy for a perpetrator, so that it can gather information from the collaboration with other network entities and capitalize this information into knowledge to accelerate its malice intentions. Simulation results show that this attack is far more detrimental than what we have experienced in the past and need to be addressed before commercialization of CR-based networks.
Adeniji, V. O., Sibanda, K..  2018.  Analysis of the effect of malicious packet drop attack on packet transmission in wireless mesh networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1–6.
Wireless mesh networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various environments such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. However, the routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. The authors of this paper have noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach however exposes WMNs to vulnerability such as malicious packet drop attack. This paper presents an evaluation of the effect of the black hole attack with other influential factors in WMNs. In this study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack. On an average, 47.41% of the transmitted data packets were dropped in presence of black hole attack.
2018-11-28
Jhumka, Arshad, Bradbury, Matthew.  2017.  Deconstructing Source Location Privacy-Aware Routing Protocols. Proceedings of the Symposium on Applied Computing. :431–436.

Source location privacy (SLP) is becoming an important property for a large class of security-critical wireless sensor network applications such as monitoring and tracking. Much of the previous work on SLP have focused on the development of various protocols to enhance the level of SLP imparted to the network, under various attacker models and other conditions. Others works have focused on analysing the level of SLP being imparted by a specific protocol. In this paper, we focus on deconstructing routing-based SLP protocols to enable a better understanding of their structure. We argue that the SLP-aware routing protocols can be classified into two main categories, namely (i) spatial and (ii) temporal. Based on this, we show that there are three important components, namely (i) decoy selection, (ii) use and routing of control messages and (iii) use and routing of decoy messages. The decoy selection technique imparts the spatial or temporal property of SLP-aware routing. We show the viability of the framework through the construction of well-known SLP-aware routing protocols using the identified components.

2018-11-19
Yin, H., Yin, Z., Yang, Y., Sun, J..  2018.  Research on the Node Information Security of WSN Based on Multi-Party Data Fusion Algorithm. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :400–405.

Smart grid is the cornerstone of the modern urban construction, leading the development trend of the urban power industry. Wireless sensor network (WSN) is widely used in smart power grid. It mainly covers two routing methods, the plane routing protocol and the clustering routing protocol. Since the plane routing protocol needs to maintain a large routing table and works with a poor scalability, it will increase the overall cost of the system in practical use. Therefore, in this paper, the clustering routing protocol is selected to achieve a better operation performance of the wireless sensor network. In order to enhance the reliability of the routing security, the data fusion technology is also utilized. Based on this method, the rationality of the topology structure of the smart grid and the security of the node information can be effectively improved.

2018-09-28
Melnikov, D. A., Durakovsky, A. P., Dvoryankin, S. V., Gorbatov, V. S..  2017.  Concept for Increasing Security of National Information Technology Infrastructure and Private Clouds. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :155–160.

This paper suggests a conceptual mechanism for increasing the security level of the global information community, national information technology infrastructures (e-governments) and private cloud structures, which uses the logical characteristic of IPv6-protocol. The mechanism is based on the properties of the IPv6-header and, in particular, rules of coding IPv6-addresses.

2018-07-06
Du, Xiaojiang.  2004.  Using k-nearest neighbor method to identify poison message failure. IEEE Global Telecommunications Conference, 2004. GLOBECOM '04. 4:2113–2117Vol.4.

Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.

2018-06-20
Chowdhury, S. K., Sen, M..  2017.  Attacks and mitigation techniques on mobile ad hoc network \#x2014; A survey. 2017 International Conference on Trends in Electronics and Informatics (ICEI). :11–18.

A mobile ad hoc network is a type of ad hoc network in which node changes it locations and configures them. It uses wireless medium to communicate with other networks. It also does not possess centralized authority and each node has the ability to perform some tasks. Nodes in this type of network has a routing table depending on which it finds the optimal way to send packets in forward direction but link failure should be updated in node table to encompass that. In civilian environment like meeting rooms, cab networking etc, in military search and rescue operations it has huge application.

Gurung, S., Chauhan, S..  2017.  A review of black-hole attack mitigation techniques and its drawbacks in Mobile Ad-hoc Network. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2379–2385.

Mobile Ad-hoc Network (MANET) is a prominent technology in the wireless networking field in which the movables nodes operates in distributed manner and collaborates with each other in order to provide the multi-hop communication between the source and destination nodes. Generally, the main assumption considered in the MANET is that each node is trusted node. However, in the real scenario, there are some unreliable nodes which perform black hole attack in which the misbehaving nodes attract all the traffic towards itself by giving false information of having the minimum path towards the destination with a very high destination sequence number and drops all the data packets. In the paper, we have presented different categories for black hole attack mitigation techniques and also presented the summary of various techniques along with its drawbacks that need to be considered while designing an efficient protocol.

Kamel, M. B. M., Alameri, I., Onaizah, A. N..  2017.  STAODV: A secure and trust based approach to mitigate blackhole attack on AODV based MANET. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1278–1282.

Mobile ad hoc networks (MANET) is a type of networks that consists of autonomous nodes connecting directly without a top-down network architecture or central controller. Absence of base stations in MANET force the nodes to rely on their adjacent nodes in transmitting messages. The dynamic nature of MANET makes the relationship between nodes untrusted due to mobility of nodes. A malicious node may start denial of service attack at network layer to discard the packets instead of forwarding them to destination which is known as black hole attack. In this paper a secure and trust based approach based on ad hoc on demand distance vector (STAODV) has been proposed to improve the security of AODV routing protocol. The approach isolates the malicious nodes that try to attack the network depending on their previous information. A trust level is attached to each participating node to detect the level of trust of that node. Each incoming packet will be examined to prevent the black hole attack.

Sharma, S..  2017.  A secure reputation based architecture for MANET routing. 2017 4th International Conference on Electronics and Communication Systems (ICECS). :106–110.

Mobile Ad hoc Network has a wide range of applications in military and civilian domains. It is generally assumed that the nodes are trustworthy and cooperative in routing protocols of MANETs viz. AODV, DSR etc. This assumption makes wireless ad hoc network more prone to interception and manipulation which further open possibilities of various types of Denial of Service (DoS) attacks. In order to mitigate the effect of malicious nodes, a reputation based secure routing protocol is proposed in this paper. The basic idea of the proposed scheme is organize the network with 25 nodes which are deployed in a 5×5 grid structure. Each normal node in the network has a specific prime number, which acts as Node identity. A Backbone Network (BBN) is deployed in a 5×5 grid structure. The proposed scheme uses legitimacy value table and reputation level table maintained by backbone network in the network. These tables are used to provide best path selection after avoiding malicious nodes during path discovery. Based on the values collected in their legitimacy table & reputation level table backbone nodes separate and avoid the malicious nodes while making path between source and destination.

Mistry, M., Tandel, P., Reshamwala, V..  2017.  Mitigating techniques of black hole attack in MANET: A review. 2017 International Conference on Trends in Electronics and Informatics (ICEI). :554–557.

A Mobile Ad-hoc Network (MANET) is infrastructure-less network where nodes can move arbitrary in any place without the help of any fixed infrastructure. Due to the vague limit, no centralized administrator, dynamic topology and wireless connections it is powerless against various types of assaults. MANET has more threat contrast to any other conventional networks. AODV (Ad-hoc On-demand Distance Vector) is most utilized well-known routing protocol in MANET. AODV protocol is scared by "Black Hole" attack. A black hole attack is a serious assault that can be effortlessly employed towards AODV protocol. A black hole node that incorrectly replies for each path requests while not having active path to targeted destination and drops all the packets that received from other node. If these malicious nodes cooperate with every other as a set then the harm will be very extreme. In this paper, present review on various existing techniques for detection and mitigation of black hole attacks.

Sasirekha, D., Radha, N..  2017.  Secure and attack aware routing in mobile ad hoc networks against wormhole and sinkhole attacks. 2017 2nd International Conference on Communication and Electronics Systems (ICCES). :505–510.

The inherent characteristics of Mobile Ad hoc network (MANET) such as dynamic topology, limited bandwidth, limited power supply, infrastructure less network make themselves attractive for a wide spectrum of applications and vulnerable to security attacks. Sinkhole attack is the most disruptive routing layer attack. Sinkhole nodes attract all the traffic towards them to setup further active attacks such as Black hole, Gray hole and wormhole attacks. Sinkhole nodes need to be isolated from the MANET as early as possible. In this paper, an effective mechanism is proposed to prevent and detect sinkhole and wormhole attacks in MANET. The proposed work detects and punishes the attacker nodes using different techniques such as node collusion technique, which classifies a node as an attacker node only with the agreement with the neighboring nodes. When the node suspects the existence of attacker or sinkhole node in the path, it joins together with neighboring nodes to determine the sinkhole node. In the prevention of routing attacks, the proposed system introduces a route reserve method; new routes learnt are updated in the routing table of the node only after ensuring that the route does not contain the attacker nodes. The proposed system effectively modifies Ad hoc on demand Distance Vector (AODV) with the ability to detect and prevent the sinkhole and wormhole attack, so the modified protocol is named as Attack Aware Alert (A3AODV). The experiments are carried out in NS2 simulator, and the result shows the efficiency in terms of packet delivery ratio and routing overhead.

Bhuvaneswari, R., Ramachandran, R..  2017.  Prevention of Denial of Service (DoS) attack in OLSR protocol using fictitious nodes and ECC algorithm. 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET). :1–5.

Security is the most important issue which needs to be given utmost importance and as both `Mobile Ad hoc Networks (MANET) and Wireless Sensor Networks (WSN) have similar system models, their security issues are also similar. This study deals in analysing the various lapses in security and the characteristics of various routing protocol's functionality and structure. This paper presents the implementation of ECC algorithm in the prevention of Denial of Service (DoS) attack through fictitious node. Optimized Link State Routing (OLSR) protocol is a MANET routing protocol and is evaluated mainly for two things. Primarily OLSR is less secure like AODV and others. The reason for it being less secure is that it is a table-driven in nature and uses a methodology called selective flooding technique, where redundancy is reduced and thus the security possibilities of the protocol is reduced. Another reason for selecting OLSR is that is an highly effective routing protocol for MANET. A brief information about formal routing is provided by the proposed methodology termed Denial Contradictions with Fictitious Node Mechanism (DCFM) which provides brief information about formal routing. Here, fictitious node acts as a virtual node and large networks are managed from attacks. More than 95% of attacks are prevented by this proposed methodology and the solution is applicable all the other DoS attacks of MANET.

Waraich, P. S., Batra, N..  2017.  Prevention of denial of service attack over vehicle ad hoc networks using quick response table. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :586–591.

Secure routing over VANET is a major issue due to its high mobility environment. Due to dynamic topology, routes are frequently updated and also suffers from link breaks due to the obstacles i.e. buildings, tunnels and bridges etc. Frequent link breaks can cause packet drop and thus result in degradation of network performance. In case of VANETs, it becomes very difficult to identify the reason of the packet drop as it can also occur due to the presence of a security threat. VANET is a type of wireless adhoc network and suffer from common attacks which exist for mobile adhoc network (MANET) i.e. Denial of Services (DoS), Black hole, Gray hole and Sybil attack etc. Researchers have already developed various security mechanisms for secure routing over MANET but these solutions are not fully compatible with unique attributes of VANET i.e. vehicles can communicate with each other (V2V) as well as communication can be initiated with infrastructure based network (V2I). In order to secure the routing for both types of communication, there is need to develop a solution. In this paper, a method for secure routing is introduced which can identify as well as eliminate the existing security threat.

Verma, R., Sharma, R., Singh, U..  2017.  New approach through detection and prevention of wormhole attack in MANET. 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2:526–531.

A Local Area Network (LAN) consists of wireless mobile nodes that can communicate with each other through electromagnetic radio waves. Mobile Ad hoc Network (MANET) consists of mobile nodes, the network is infrastructure less. It dynamically self organizes in arbitrary and temporary network topologies. Security is extremely vital for MANET. Attacks pave way for security. Among all the potential attacks on MANET, detection of wormhole attack is very difficult.One malicious node receives packets from a particular location, tunnels them to a different contagious nodes situated in another location of the network and distorts the full routing method. All routes are converged to the wormhole established by the attackers. The complete routing system in MANET gets redirected. Many existing ways have been surveyed to notice wormhole attack in MANET. Our proposed methodology is a unique wormhole detection and prevention algorithm that shall effectively notice the wormhole attack in theMANET. Our notion is to extend the detection as well as the quantitative relation relative to the existing ways.

Chourasia, R., Boghey, R. K..  2017.  Novel IDS security against attacker routing misbehavior of packet dropping in MANET. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :456–460.

The MANET that is Mobile Ad hoc Network are forming a group of many nodes. They can interact with each other in limited area. All the Malicious nodes present in the MANET always disturb the usual performance of routing and that cause the degradation of dynamic performance of the network. Nodes which are malicious continuously try to stump the neighbor nodes during the process of routing as all neighbor nodes in the network merely forward the reply and response of neighboring. The intermediate nodes work is very responsible in routing procedure with continuous movement. During the work we have recommended one security scheme against the attack of packet dropping by malicious node in the network. The scheme which is recommended here will work to find attacker by using the concept of detection of link to forward the data or information between sender and receiver. The packet dropping on link, through node is detected and prevented by IDS security system. The scheme not only works to identify the nodes performing malicious activity however prevent them also. The identification of attacker is noticed by dropping of data packets in excsssessive quantity. The prevention of it can be done via choosing the alternate route somewhere the attacker performing malicious activity not available among the senders to receivers. The neighbor nodes or intermediary identify the malicious activity performer by the way of reply of malicious nodes which is confirmed. The recommended IDS system secures the network and also increases the performance after blocking malicious nodes that perform malicious activity in the network. The network performance measures in the presence of attack and secure IDS with the help of performance metrics like PDR, throughput etc. Planned secure routing improves data receiving and minimizes dropping data in network.

Saurabh, V. K., Sharma, R., Itare, R., Singh, U..  2017.  Cluster-based technique for detection and prevention of black-hole attack in MANETs. 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2:489–494.

Secure routing in the field of mobile ad hoc network (MANET) is one of the most flourishing areas of research. Devising a trustworthy security protocol for ad hoc routing is a challenging task due to the unique network characteristics such as lack of central authority, rapid node mobility, frequent topology changes, insecure operational environment, and confined availability of resources. Due to low configuration and quick deployment, MANETs are well-suited for emergency situations like natural disasters or military applications. Therefore, data transfer between two nodes should necessarily involve security. A black-hole attack in the mobile ad-hoc network (MANET) is an offense occurring due to malicious nodes, which attract the data packets by incorrectly publicizing a fresh route to the destination. A clustering direction in AODV routing protocol for the detection and prevention of black-hole attack in MANET has been put forward. Every member of the unit will ping once to the cluster head, to detect the exclusive difference between the number of data packets received and forwarded by the particular node. If the fault is perceived, all the nodes will obscure the contagious nodes from the network. The reading of the system performance has been done in terms of packet delivery ratio (PDR), end to end delay (ETD) throughput and Energy simulation inferences are recorded using ns2 simulator.

Singh, E. P..  2017.  Re-joining of authorized nodes in MANETs using EGSR scheme and detection of internal attacks using 2ACK scheme. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :306–311.

One of the specially designated versatile networks, commonly referred to as MANET, performs on the basics that each and every one grouping in nodes totally operate in self-sorting out limits. In any case, performing in a group capacity maximizes quality and different sources. Mobile ad hoc network is a wireless infrastructureless network. Due to its unique features, various challenges are faced under MANET when the role of routing and its security comes into play. The review has demonstrated that the impact of failures during the information transmission has not been considered in the existing research. The majority of strategies for ad hoc networks just determines the path and transmits the data which prompts to packet drop in case of failures, thus resulting in low dependability. The majority of the existing research has neglected the use of the rejoining processing of the root nodes network. Most of the existing techniques are based on detecting the failures but the use of path re-routing has also been neglected in the existing methods. Here, we have proposed a method of path re-routing for managing the authorized nodes and managing the keys for group in ad hoc environment. Securing Schemes, named as 2ACK and the EGSR schemes have been proposed, which may be truly interacted to most of the routing protocol. The path re-routing has the ability to reduce the ratio of dropped packets. The comparative analysis has clearly shown that the proposed technique outperforms the available techniques in terms of various quality metrics.

Ansari, A., Waheed, M. A..  2017.  Flooding attack detection and prevention in MANET based on cross layer link quality assessment. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :612–617.

Mobile Ad hoc Network (MANET) is one of the most popular dynamic topology reconfigurable local wireless network standards. Distributed Denial of Services is one of the most challenging threats in such a network. Flooding attack is one of the forms of DDoS attack whereby certain nodes in the network miss-utilizes the allocated channel by flooding packets with very high packet rate to it's neighbors, causing a fast energy loss to the neighbors and causing other legitimate nodes a denial of routing and transmission services from these nodes. In this work we propose a novel link layer assessment based flooding attack detection and prevention method. MAC layer of the nodes analyzes the signal properties and incorporated into the routing table by a cross layer MAC/Network interface. Once a node is marked as a flooding node, it is blacklisted in the routing table and is communicated to MAC through Network/MAC cross layer interface. Results shows that the proposed technique produces more accurate flooding attack detection in comparison to current state of art statistical analysis based flooding attack detection by network layer.

Martin-Escalona, I., Perrone, F., Zola, E., Barcelo-Arroyo, F..  2017.  Impact of unreliable positioning in location-based routing protocols for MANETs. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1534–1539.

MANETs have been focusing the interest of researchers for several years. The new scenarios where MANETs are being deployed make that several challenging issues remain open: node scalability, energy efficiency, network lifetime, Quality of Service (QoS), network overhead, data privacy and security, and effective routing. This latter is often seen as key since it frequently constrains the performance of the overall network. Location-based routing protocols provide a good solution for scalable MANETs. Although several location-based routing protocols have been proposed, most of them rely on error-free positions. Only few studies have focused so far on how positioning error affects the routing performance; also, most of them consider outdated solutions. This paper is aimed at filling this gap, by studying the impact of the error in the position of the nodes of two location-based routing protocols: DYMOselfwd and AODV-Line. These protocols were selected as they both aim at reducing the routing overhead. Simulations considering different mobility patterns in a dense network were conducted, so that the performance of these protocols can be assessed under ideal (i.e. error-less) and realistic (i.e. with error) conditions. The results show that AODV-Line builds less reliable routes than DYMOselfwd in case of error in the position information, thus increasing the routing overhead.