Visible to the public Biblio

Filters: Keyword is Collaborative recommendation  [Clear All Filters]
2018-02-02
You, J., Shangguan, J., Sun, Y., Wang, Y..  2017.  Improved trustworthiness judgment in open networks. 2017 International Smart Cities Conference (ISC2). :1–2.

The collaborative recommendation mechanism is beneficial for the subject in an open network to find efficiently enough referrers who directly interacted with the object and obtain their trust data. The uncertainty analysis to the collected trust data selects the reliable trust data of trustworthy referrers, and then calculates the statistical trust value on certain reliability for any object. After that the subject can judge its trustworthiness and further make a decision about interaction based on the given threshold. The feasibility of this method is verified by three experiments which are designed to validate the model's ability to fight against malicious service, the exaggeration and slander attack. The interactive success rate is significantly improved by using the new model, and the malicious entities are distinguished more effectively than the comparative model.

2017-05-19
Pan, Weike, Yang, Qiang, Duan, Yuchao, Ming, Zhong.  2016.  Transfer Learning for Semisupervised Collaborative Recommendation. ACM Trans. Interact. Intell. Syst.. 6:10:1–10:21.

Users’ online behaviors such as ratings and examination of items are recognized as one of the most valuable sources of information for learning users’ preferences in order to make personalized recommendations. But most previous works focus on modeling only one type of users’ behaviors such as numerical ratings or browsing records, which are referred to as explicit feedback and implicit feedback, respectively. In this article, we study a Semisupervised Collaborative Recommendation (SSCR) problem with labeled feedback (for explicit feedback) and unlabeled feedback (for implicit feedback), in analogy to the well-known Semisupervised Learning (SSL) setting with labeled instances and unlabeled instances. SSCR is associated with two fundamental challenges, that is, heterogeneity of two types of users’ feedback and uncertainty of the unlabeled feedback. As a response, we design a novel Self-Transfer Learning (sTL) algorithm to iteratively identify and integrate likely positive unlabeled feedback, which is inspired by the general forward/backward process in machine learning. The merit of sTL is its ability to learn users’ preferences from heterogeneous behaviors in a joint and selective manner. We conduct extensive empirical studies of sTL and several very competitive baselines on three large datasets. The experimental results show that our sTL is significantly better than the state-of-the-art methods.