Visible to the public Biblio

Filters: Keyword is resilient control  [Clear All Filters]
2023-05-12
Hallajiyan, Mohammadreza, Doustmohammadi, Ali.  2022.  Min-Max-Based Resilient Consensus of Networked Control Systems. 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA). :1–5.
In this paper, we deal with the resilient consensus problem in networked control systems in which a group of agents are interacting with each other. A min-max-based resilient consensus algorithm has been proposed to help normal agents reach an agreement upon their state values in the presence of misbehaving ones. It is shown that the use of the developed algorithm will result in less computational load and fast convergence. Both synchronous and asynchronous update schemes for the network have been studied. Finally, the effectiveness of the proposed algorithm has been evaluated through numerical examples.
2021-12-20
Zheng, Shengbao, Shu, Shaolong, Lin, Feng.  2021.  Modeling and Control of Discrete Event Systems under Joint Sensor-Actuator Cyber Attacks. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :216–220.
In this paper, we investigate joint sensor-actuator cyber attacks in discrete event systems. We assume that attackers can attack some sensors and actuators at the same time by altering observations and control commands. Because of the nondeterminism in observation and control caused by cyber attacks, the behavior of the supervised systems becomes nondeterministic and deviates from the target. We define two bounds on languages, an upper-bound and a lower-bound, to describe the nondeterministic behavior. We then use the upper-bound language to investigate the safety supervisory control problem under cyber attacks. After introducing CA-controllability and CA-observability, we successfully solve the supervisory control problem under cyber attacks.
2021-09-16
Rieger, Craig, Kolias, Constantinos, Ulrich, Jacob, McJunkin, Timothy R..  2020.  A Cyber Resilient Design for Control Systems. 2020 Resilience Week (RWS). :18–25.
The following topics are dealt with: security of data; distributed power generation; power engineering computing; power grids; power system security; computer network security; voltage control; risk management; power system measurement; critical infrastructures.
2020-12-15
Xu, Z., Zhu, Q..  2018.  Cross-Layer Secure and Resilient Control of Delay-Sensitive Networked Robot Operating Systems. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1712—1717.

A Robot Operating System (ROS) plays a significant role in organizing industrial robots for manufacturing. With an increasing number of the robots, the operators integrate a ROS with networked communication to share the data. This cyber-physical nature exposes the ROS to cyber attacks. To this end, this paper proposes a cross-layer approach to achieve secure and resilient control of a ROS. In the physical layer, due to the delay caused by the security mechanism, we design a time-delay controller for the ROS agent. In the cyber layer, we define cyber states and use Markov Decision Process to evaluate the tradeoffs between physical and security performance. Due to the uncertainty of the cyber state, we extend the MDP to a Partially Observed Markov Decision Process (POMDP). We propose a threshold solution based on our theoretical results. Finally, we present numerical examples to evaluate the performance of the secure and resilient mechanism.

2017-12-28
Lucia, W., Sinopoli, B., Franze, G..  2016.  A set-theoretic approach for secure and resilient control of Cyber-Physical Systems subject to false data injection attacks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

In this paper a novel set-theoretic control framework for Cyber-Physical Systems is presented. By resorting to set-theoretic ideas, an anomaly detector module and a control remediation strategy are formally derived with the aim to contrast cyber False Data Injection (FDI) attacks affecting the communication channels. The resulting scheme ensures Uniformly Ultimate Boundedness and constraints fulfillment regardless of any admissible attack scenario.

2017-05-19
Paridari, Kaveh, El-Din Mady, Alie, La Porta, Silvio, Chabukswar, Rohan, Blanco, Jacobo, Teixeira, André, Sandberg, Henrik, Boubekeur, Menouer.  2016.  Cyber-physical-security Framework for Building Energy Management System. Proceedings of the 7th International Conference on Cyber-Physical Systems. :18:1–18:9.

Energy management systems (EMS) are used to control energy usage in buildings and campuses, by employing technologies such as supervisory control and data acquisition (SCADA) and building management systems (BMS), in order to provide reliable energy supply and maximise user comfort while minimising energy usage. Historically, EMS systems were installed when potential security threats were only physical. Nowadays, EMS systems are connected to the building network and as a result directly to the outside world. This extends the attack surface to potential sophisticated cyber-attacks, which adversely impact EMS operation, resulting in service interruption and downstream financial implications. Currently, the security systems that detect attacks operate independently to those which deploy resiliency policies and use very basic methods. We propose a novel EMS cyber-physical-security framework that executes a resilient policy whenever an attack is detected using security analytics. In this framework, both the resilient policy and the security analytics are driven by EMS data, where the physical correlations between the data-points are identified to detect outliers and then the control loop is closed using an estimated value in place of the outlier. The framework has been tested using a reduced order model of a real EMS site.