Biblio
This project develops techniques to protect against sensor attacks on cyber-physical systems. Specifically, a resilient version of the Kalman filtering technique accompanied with a watermarking approach is proposed to detect cyber-attacks and estimate the correct state of the system. The defense techniques are used in conjunction and validated on two case studies: i) an unmanned ground vehicle (UGV) in which an attacker alters the reference angle and ii) a Cube Satellite (CubeSat) in which an attacker modifies the orientation of the satellite degrading its performance. Based on this work, we show that the proposed techniques in conjunction achieve better resiliency and defense capability than either technique alone against spoofing and replay attacks.
Security of control systems have become a new and important field of research since malicious attacks on control systems indeed occurred including Stuxnet in 2011 and north eastern electrical grid black out in 2003. Attacks on sensors and/or actuators of control systems cause malfunction, instability, and even system destruction. The impact of attack may differ by which instrumentation (sensors and/or actuators) is being attacked. In particular, for control systems with multiple sensors, attack on each sensor may have different impact, i.e., attack on some sensors leads to a greater damage to the system than those for other sensors. To investigate this, we consider sensor bias injection attacks in linear control systems equipped with anomaly detector, and quantify the maximum impact of attack on sensors while the attack remains undetected. Then, we introduce a notion of sensor security index for linear dynamic systems to quantify the vulnerability under sensor attacks. Method of reducing system vulnerability is also discussed using the notion of sensor security index.
This paper addresses the problem of state estimation of a linear time-invariant system when some of the sensors or/and actuators are under adversarial attack. In our set-up, the adversarial agent attacks a sensor (actuator) by manipulating its measurement (input), and we impose no constraint on how the measurements (inputs) are corrupted. We introduce the notion of ``sparse strong observability'' to characterize systems for which the state estimation is possible, given bounds on the number of attacked sensors and actuators. Furthermore, we develop a secure state estimator based on Satisfiability Modulo Theory (SMT) solvers.
In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.
The vast majority of today's critical infrastructure is supported by numerous feedback control loops and an attack on these control loops can have disastrous consequences. This is a major concern since modern control systems are becoming large and decentralized and thus more vulnerable to attacks. This paper is concerned with the estimation and control of linear systems when some of the sensors or actuators are corrupted by an attacker. We give a new simple characterization of the maximum number of attacks that can be detected and corrected as a function of the pair (A,C) of the system and we show in particular that it is impossible to accurately reconstruct the state of a system if more than half the sensors are attacked. In addition, we show how the design of a secure local control loop can improve the resilience of the system. When the number of attacks is smaller than a threshold, we propose an efficient algorithm inspired from techniques in compressed sensing to estimate the state of the plant despite attacks. We give a theoretical characterization of the performance of this algorithm and we show on numerical simulations that the method is promising and allows to reconstruct the state accurately despite attacks. Finally, we consider the problem of designing output-feedback controllers that stabilize the system despite sensor attacks. We show that a principle of separation between estimation and control holds and that the design of resilient output feedback controllers can be reduced to the design of resilient state estimators.