Biblio
Filters: Keyword is Sensor systems [Clear All Filters]
Possibility of the Intruder Type Determination in Systems of Physical Protection of Objects. 2022 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
.
2022. This article proposes a method for determining the intruder type in the systems of physical protection of objects. An intruder trying to enter the territory, buildings or premises of the facility has to overcome typical engineering reinforcement elements of building structures. Elements of building structures are equipped with addressable alarm sensors. The intruder type is proposed to be determined according to its equipment by comparing the time of actually overcoming the building structure elements with the expert estimates. The time to overcome the elements of building structures is estimated by the time between successive responses of the security alarm address sensors. The intruder's awareness of the protection object is proposed to be assessed by tracking the route of its movement on the object using address sensors. Determining the intruder type according to the data of the security alarm systems can be used for the in-process tactics control of the security group actions.
Sensor Data Protection in Cyber-Physical Systems. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :855—859.
.
2022. Cyber-Physical Systems (CPS) have a physical part that can interact with sensors and actuators. The data that is read from sensors and the one generated to drive actuators is crucial for the correct operation of this class of devices. Most implementations trust the data being read from sensors and the outputted data to actuators. Real-time validation of the input and output of data for any system is crucial for the safety of its operation. This paper proposes an architecture for handling this issue through smart data guards detached from sensors and controllers and acting solely on the data. This mitigates potential issues of malfunctioning sensors and intentional sensor and controller attacks. The data guards understand the expected data, can detect anomalies and can correct them in real-time. This approach adds more guarantees for fault-tolerant behavior in the presence of attacks and sensor failures.
Analyzing and Mitigating of Time Delay Attack (TDA) by using Fractional Filter based IMC-PID with Smith Predictor. 2022 IEEE 61st Conference on Decision and Control (CDC). :3194—3199.
.
2022. In this era, with a great extent of automation and connection, modern production processes are highly prone to cyber-attacks. The sensor-controller chain becomes an obvious target for attacks because sensors are commonly used to regulate production facilities. In this research, we introduce a new control configuration for the system, which is sensitive to time delay attacks (TDA), in which data transfer from the sensor to the controller is intentionally delayed. The attackers want to disrupt and damage the system by forcing controllers to use obsolete data about the system status. In order to improve the accuracy of delay identification and prediction, as well as erroneous limit and estimation for control, a new control structure is developed by an Internal Model Control (IMC) based Proportional-Integral-Derivative (PID) scheme with a fractional filter. An additional concept is included to mitigate the effect of time delay attack, i.e., the smith predictor. Simulation studies of the established control framework have been implemented with two numerical examples. The performance assessment of the proposed method has been done based on integral square error (ISE), integral absolute error (IAE) and total variation (TV).
Security Door Lock Using Multi-Sensor System Based on RFID, Fingerprint, and Keypad. 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). :453–457.
.
2022. Thefts problem in household needs to be anticipated with home security system. One of simple methods is using automatic solenoid door lock system, so that it is difficult to be duplicated and will reduce the chance of theft action when the house is empty. Therefore, a home security system prototype that can be accessed by utilizing biometric fingerprint, Radio Frequency Identification (RFID), and keypad sensors was designed and tested. Arduino Uno works to turn on the door lock solenoid, so door access will be given when authentication is successful. Experimental results show that fingerprint sensor works well by being able to read fingerprints perfectly and the average time required to scan a fingerprint was 3.7 seconds. Meanwhile, Radio Frequency Identification (RFID) sensor detects Electronic-Kartu Tanda Penduduk (E-KTP) and the average time required for Radio Frequency Identification (RFID) to scan the card is about 2.4 seconds. Keypad functions to store password to unlock the door which produces the average time of 3.7 seconds after 10 trials. Average time to open with multi-sensor is 9.8 seconds. However, its drawback is no notification or SMS which directly be accessed by a cellphone or website with Wi-Fi or Telegram applications allow homeowners to monitor their doors from afar as to minimize the number of house thefts.
Implementation and Performance Analysis of Lightweight Block Ciphers for IoT applications using the Contiki Operating system. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :50–54.
.
2022. Recent years have witnessed impressive advances in technology which led to the rapid growth of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) using numerous low-powered devices with a huge number of actuators and sensors. These devices gather and exchange data over the internet and generate enormous amounts of data needed to be secured. Although traditional cryptography provides an efficient means of addressing device and communication confidentiality, integrity, and authenticity issues, it may not be appropriate for very resource-constrained systems, particularly for end-nodes such as a simply connected sensor. Thus, there is an ascent need to use lightweight cryptography (LWC) providing the needed level of security with less complexity, area and energy overhead. In this paper, four lightweight cryptographic algorithms called PRESENT, LED, Piccolo, and SPARX were implemented over a Contiki-based IoT operating system, dedicated for IoT platforms, and assessed regarding RAM and ROM usage, power and energy consumption, and CPU cycles number. The Cooja network simulator is used in this study to determine the best lightweight algorithms to use in IoT applications utilizing wireless sensor networks technology.
Internet of Things Security: Requirements, Attacks on SH-IoT Platform. 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :742—747.
.
2022. Smart building security systems typically consist of sensors and controllers that monitor power operating systems, alarms, camera monitoring, access controls, and many other important information and security systems. These systems are managed and controlled through online platforms. A successful attack on one of these platforms may result in the failure of one or more critical intelligent systems in the building. In this paper, the security requirements in the application layer of any IoT system were discussed, in particular the role of IoT platforms in dealing with the security problems that smart buildings are exposed to and the extent of their strength to reduce the attacks they are exposed to, where an experimental platform was designed to test the presence of security vulnerabilities and This was done by using the Zed Attack Proxy (ZAP) tool, according to the OWASP standards and security level assessment, and the importance of this paper comes as a contribution to providing information about the most famous IoT platforms and stimulating work to explore security concerns in IoT-based platforms.
A C4ISR Application on the Swarm Drones Context in a Low Infrastructure Scenario. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
.
2022. The military operations in low communications infrastructure scenarios employ flexible solutions to optimize the data processing cycle using situational awareness systems, guaranteeing interoperability and assisting in all processes of decision-making. This paper presents an architecture for the integration of Command, Control, Computing, Communication, Intelligence, Surveillance and Reconnaissance Systems (C4ISR), developed within the scope of the Brazilian Ministry of Defense, in the context of operations with Unmanned Aerial Vehicles (UAV) - swarm drones - and the Internet-to-the-battlefield (IoBT) concept. This solution comprises the following intelligent subsystems embedded in UAV: STFANET, an SDN-Based Topology Management for Flying Ad Hoc Network focusing drone swarms operations, developed by University of Rio Grande do Sul; Interoperability of Command and Control (INTERC2), an intelligent communication middleware developed by Brazilian Navy; A Mission-Oriented Sensors Array (MOSA), which provides the automatization of data acquisition, data fusion, and data sharing, developed by Brazilian Army; The In-Flight Awareness Augmentation System (IFA2S), which was developed to increase the safety navigation of Unmanned Aerial Vehicles (UAV), developed by Brazilian Air Force; Data Mining Techniques to optimize the MOSA with data patterns; and an adaptive-collaborative system, composed of a Software Defined Radio (SDR), to solve the identification of electromagnetic signals and a Geographical Information System (GIS) to organize the information processed. This research proposes, as a main contribution in this conceptual phase, an application that describes the premises for increasing the capacity of sensing threats in the low structured zones, such as the Amazon rainforest, using existing communications solutions of Brazilian defense monitoring systems.
Hardware-Based Randomized Encoding for Sensor Authentication in Power Grid SCADA Systems. 2022 IEEE Texas Power and Energy Conference (TPEC). :1–6.
.
2022. Supervisory Control and Data Acquisition (SCADA) systems are utilized extensively in critical power grid infrastructures. Modern SCADA systems have been proven to be susceptible to cyber-security attacks and require improved security primitives in order to prevent unwanted influence from an adversarial party. One section of weakness in the SCADA system is the integrity of field level sensors providing essential data for control decisions at a master station. In this paper we propose a lightweight hardware scheme providing inferred authentication for SCADA sensors by combining an analog to digital converter and a permutation generator as a single integrated circuit. Through this method we encode critical sensor data at the time of sensing, so that unencoded data is never stored in memory, increasing the difficulty of software attacks. We show through experimentation how our design stops both software and hardware false data injection attacks occurring at the field level of SCADA systems.
Risk Assessment Method of Microgrid System Based on Random Matrix Theory. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:705—709.
.
2022. In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
Key technologies applied to the optimization of smart grid systems based on the Internet of Things: A Review. 2022 V Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC). :1—8.
.
2022. This article describes an analysis of the key technologies currently applied to improve the quality, efficiency, safety and sustainability of Smart Grid systems and identifies the tools to optimize them and possible gaps in this area, considering the different energy sources, distributed generation, microgrids and energy consumption and production capacity. The research was conducted with a qualitative methodological approach, where the literature review was carried out with studies published from 2019 to 2022, in five (5) databases following the selection of studies recommended by the PRISMA guide. Of the five hundred and four (504) publications identified, ten (10) studies provided insight into the technological trends that are impacting this scenario, namely: Internet of Things, Big Data, Edge Computing, Artificial Intelligence and Blockchain. It is concluded that to obtain the best performance within Smart Grids, it is necessary to have the maximum synergy between these technologies, since this union will enable the application of advanced smart digital technology solutions to energy generation and distribution operations, thus allowing to conquer a new level of optimization.
Short-Term Time Series Forecasting based on Edge Machine Learning Techniques for IoT devices. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1—5.
.
2022. As the effects of climate change are becoming more and more evident, the importance of improved situation awareness is also gaining more attention, both in the context of preventive environmental monitoring and in the context of acute crisis response. One important aspect of situation awareness is the correct and thorough monitoring of air pollutants. The monitoring is threatened by sensor faults, power or network failures, or other hazards leading to missing or incorrect data transmission. For this reason, in this work we propose two complementary approaches for predicting missing sensor data and a combined technique for detecting outliers. The proposed solution can enhance the performance of low-cost sensor systems, closing the gap of missing measurements due to network unavailability, detecting drift and outliers thus paving the way to its use as an alert system for reportable events. The techniques have been deployed and tested also in a low power microcontroller environment, verifying the suitability of such a computing power to perform the inference locally, leading the way to an edge implementation of a virtual sensor digital twin.
Security Evaluation of Cyber-Physical Systems with Redundant Components. 2022 CPSSI 4th International Symposium on Real-Time and Embedded Systems and Technologies (RTEST). :1—7.
.
2022. The emergence of CPSs leads to modernization of critical infrastructures and improving flexibility and efficiency from one point of view. However, from another point of view, this modernization has subjected them to cyber threats. This paper provides a modeling approach for evaluating the security of CPSs. The main idea behind the presented model is to study the attacker and the system behaviors in the penetration and attack phases with exploiting some defensive countermeasures such as redundant components and attack detection strategies. By using the proposed approach, we can investigate how redundancy factor of sensors, controllers and actuators and intrusion detection systems can improve the system security and delay the system security failure.
A Threat Model and Security Recommendations for IoT Sensors in Connected Vehicle Networks. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1—5.
.
2022. Intelligent transportation systems, such as connected vehicles, are able to establish real-time, optimized and collision-free communication with the surrounding ecosystem. Introducing the internet of things (IoT) in connected vehicles relies on deployment of massive scale sensors, actuators, electronic control units (ECUs) and antennas with embedded software and communication technologies. Combined with the lack of designed-in security for sensors and ECUs, this creates challenges for security engineers and architects to identify, understand and analyze threats so that actions can be taken to protect the system assets. This paper proposes a novel STRIDE-based threat model for IoT sensors in connected vehicle networks aimed at addressing these challenges. Using a reference architecture of a connected vehicle, we identify system assets in connected vehicle sub-systems such as devices and peripherals that mostly involve sensors. Moreover, we provide a prioritized set of security recommendations, with consideration to the feasibility and deployment challenges, which enables practical applicability of the developed threat model to help specify security requirements to protect critical assets within the sensor network.
A Review of DIS-Flooding Attacks in RPL based IoT Network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.
.
2022. The “Internet of Things (IoT)” is a term that describes physical sensors, processing software, power and other technologies to connect or interchange information between systems and devices through the Internet and other forms of communication. RPL protocol can efficiently establish network routes, communicate routing information, and adjust the topology. The 6LoWPAN concept was born out of the belief that IP should protect even the tiniest devices, and for low-power devices, minimal computational capabilities should be permitted to join IoT. The DIS-Flooding against RPL-based IoT with its mitigation techniques are discussed in this paper.
FALIoTSE: Towards Federated Adversarial Learning for IoT Search Engine Resiliency. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :290–297.
.
2021. To improve efficiency and resource usage in data retrieval, an Internet of Things (IoT) search engine organizes a vast amount of scattered data and responds to client queries with processed results. Machine learning provides a deep understanding of complex patterns and enables enhanced feedback to users through well-trained models. Nonetheless, machine learning models are prone to adversarial attacks via the injection of elaborate perturbations, resulting in subverted outputs. Particularly, adversarial attacks on time-series data demand urgent attention, as sensors in IoT systems are collecting an increasing volume of sequential data. This paper investigates adversarial attacks on time-series analysis in an IoT search engine (IoTSE) system. Specifically, we consider the Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) as our base model, implemented in a simulated federated learning scheme. We propose the Federated Adversarial Learning for IoT Search Engine (FALIoTSE) that exploits the shared parameters of the federated model as the target for adversarial example generation and resiliency. Using a real-world smart parking garage dataset, the impact of an attack on FALIoTSE is demonstrated under various levels of perturbation. The experiments show that the training error increases significantly with noises from the gradient.
Impact of False Data Injection Attacks on Deep Learning Enabled Predictive Analytics. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–7.
.
2020. Industry 4.0 is the latest industrial revolution primarily merging automation with advanced manufacturing to reduce direct human effort and resources. Predictive maintenance (PdM) is an industry 4.0 solution, which facilitates predicting faults in a component or a system powered by state-of-the- art machine learning (ML) algorithms (especially deep learning algorithms) and the Internet-of-Things (IoT) sensors. However, IoT sensors and deep learning (DL) algorithms, both are known for their vulnerabilities to cyber-attacks. In the context of PdM systems, such attacks can have catastrophic consequences as they are hard to detect due to the nature of the attack. To date, the majority of the published literature focuses on the accuracy of DL enabled PdM systems and often ignores the effect of such attacks. In this paper, we demonstrate the effect of IoT sensor attacks (in the form of false data injection attack) on a PdM system. At first, we use three state-of-the-art DL algorithms, specifically, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN) for predicting the Remaining Useful Life (RUL) of a turbofan engine using NASA's C-MAPSS dataset. The obtained results show that the GRU-based PdM model outperforms some of the recent literature on RUL prediction using the C-MAPSS dataset. Afterward, we model and apply two different types of false data injection attacks (FDIA), specifically, continuous and interim FDIAs on turbofan engine sensor data and evaluate their impact on CNN, LSTM, and GRU-based PdM systems. The obtained results demonstrate that FDI attacks on even a few IoT sensors can strongly defect the RUL prediction in all cases. However, the GRU-based PdM model performs better in terms of accuracy and resiliency to FDIA. Lastly, we perform a study on the GRU-based PdM model using four different GRU networks with different sequence lengths. Our experiments reveal an interesting relationship between the accuracy, resiliency and sequence length for the GRU-based PdM models.
Authenticating IDS autoencoders using multipath neural networks. 2021 5th Cyber Security in Networking Conference (CSNet). :1—9.
.
2021. An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure \$c\$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable \$c\$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
A Fully-Blind False Data Injection on PROFINET I/O Systems. 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE). :1–8.
.
2021. This paper presents a fully blind false data injection (FDI) attack against an industrial field-bus i.e. PROFINET that is widely used in Siemens distributed Input/Output (I/O) systems. In contrast to the existing academic efforts in the research community which assume that an attacker is already familiar with the target system, and has a full knowledge of what is being transferred from the sensors or to the actuators in the remote I/O module, our attack overcomes these strong assumptions successfully. For a real scenario, we first sniff and capture real time data packets (PNIO-RT) that are exchanged between the IO-Controller and the IO-Device. Based on the collected data, we create an I/O database that is utilized to replace the correct data with false one automatically and online. Our full attack-chain is implemented on a real industrial setting based on Siemens devices, and tested for two scenarios. In the first one, we manipulate the data that represents the actual sensor readings sent from the IO-Device to the IO-Controller, whereas in the second scenario we aim at manipulating the data that represents the actuator values sent from the IO-Controller to the IO-Device. Our results show that compromising PROFINET I/O systems in the both tested scenarios is feasible, and the physical process to be controlled is affected. Eventually we suggest some possible mitigation solutions to secure our systems from such threats.
Adaptive Neuro-fuzzy System (ANFIS) of Information Interaction in Industrial Internet of Things Networks Taking into Account Load Balancing. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :43—46.
.
2021. The main aim of the Internet of things is to improve the safety of the device through inter-Device communication (IDC). Various applications are emerging in Internet of things. Various aspects of Internet of things differ from Internet of things, especially the nodes have more velocity which causes the topology to change rapidly. The requirement of researches in the concept of Internet of things increases rapidly because Internet of things face many challenges on the security, protocols and technology. Despite the fact that the problem of organizing the interaction of IIoT devices has already attracted a lot of attention from many researchers, current research on routing in IIoT cannot effectively solve the problem of data exchange in a self-adaptive and self-organized way, because the number of connected devices is quite large. In this article, an adaptive neuro-fuzzy clustering algorithm is presented for the uniform distribution of load between interacting nodes. We synthesized fuzzy logic and neural network to balance the choice of the optimal number of cluster heads and uniform load distribution between sensors. Comparison is made with other load balancing methods in such wireless sensor networks.
Inter-Batch Gap Filling Using Compressive Sampling for Low-Cost IoT Vibration Sensors. 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.
.
2021. To measure machinery vibration, a sensor system consisting of a 3-axis accelerometer, ADXL345, attached to a self-contained system-on-a-chip with integrated Wi-Fi capabilities, ESP8266, is a low-cost solution. In this work, we first show that in such a system, the widely used direct-read-and-send method which samples and sends individually acquired vibration data points to the server is not effective, especially using Wi-Fi connection. We show that the micro delays in each individual data transmission will limit the sensor sampling rate and will also affect the time of the acquired data points not evenly spaced. Then, we propose that vibration should be sampled in batches before sending the acquired data out from the sensor node. The vibration for each batch should be acquired continuously without any form of interruption in between the sampling process to ensure the data points are evenly spaced. To fill the data gaps between the batches, we propose the use of compressive sampling technique. Our experimental results show that the maximum sampling rate of the direct-read-and-send method is 350Hz with a standard uncertainty of 12.4, and the method loses more information compared to our proposed solution that can measure the vibration wirelessly and continuously up to 633Hz. The gaps filled using compressive sampling can achieve an accuracy in terms of mean absolute error (MAE) of up to 0.06 with a standard uncertainty of 0.002, making the low-cost vibration sensor node a cost-effective solution.
CI-MCMS: Computational Intelligence Based Machine Condition Monitoring System. 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :489—493.
.
2021. Earlier around in year 1880’s, Industry 2.0 marked as change to the society caused by the invention of electricity. In today’s era, artificial intelligence plays a crucial role in defining the period of Industry 4.0. In this research study, we have presented Computational Intelligence based Machine Condition Monitoring system architecture for determination of developing faults in industrial machines. The goal is to increase efficiency of machines and reduce the cost. The architecture is fusion of machine sensitive sensors, cloud computing, artificial intelligence and databases, to develop an autonomous fault diagnostic system. To explain CI-MCMs, we have used neural networks on sensor data obtained from hydraulic system. The results obtained by neural network were compared with those obtained from traditional methods.
LC Oscillator Design Used in Sensor Measurement Based on Embedded Technology. 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME). :125–128.
.
2021. This paper emphasizes the implementation of a conditioning circuit specific for an inductive or capacitive sensor. There are some inductive sensors, such as the proximity sensor, for which the inductance is dependent with the distance, or capacitive sensors strongly dependent with the humidity, distance, etc. This category of sensors is suitable for AC domain excitation from the measurement procedure point of view. Taking into consideration the fabrication technology, the measured physical quantity is being encoded as frequency or amplitude. To generate a sinusoidal signal with constant frequency and amplitude, the Colpitts or Hartley oscillators can be used [1], [2]. But the novelty of this paper is a different approach which reveals a microcontroller-based technology where the LC circuit works in an oscillating regime even though there is an underdamped oscillation behavior. For the oscillations’ occurrence, there will be a periodical energy injection using a driving source. One of the main advantages of the mentioned circuit is the small component number. The central unit of the embedded system will fulfil two functions: maintains the oscillating regime and measures the amplitude or frequency of the output signal. In this way, the built embedded system will be robust and easy to use due to its software configuration capabilities. As a plus, such a system can measure additional sensors used in environment parameters’ compensating procedure.
Rapid Ransomware Detection through Side Channel Exploitation. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :47–54.
.
2021. A new method for the detection of ransomware in an infected host is described and evaluated. The method utilizes data streams from on-board sensors to fingerprint the initiation of a ransomware infection. These sensor streams, which are common in modern computing systems, are used as a side channel for understanding the state of the system. It is shown that ransomware detection can be achieved in a rapid manner and that the use of slight, yet distinguishable changes in the physical state of a system as derived from a machine learning predictive model is an effective technique. A feature vector, consisting of various sensor outputs, is coupled with a detection criteria to predict the binary state of ransomware present versus normal operation. An advantage of this approach is that previously unknown or zero-day version s of ransomware are vulnerable to this detection method since no apriori knowledge of the malware characteristics are required. Experiments are carried out with a variety of different system loads and with different encryption methods used during a ransomware attack. Two test systems were utilized with one having a relatively low amount of available sensor data and the other having a relatively high amount of available sensor data. The average time for attack detection in the "sensor-rich" system was 7.79 seconds with an average Matthews correlation coefficient of 0.8905 for binary system state predictions regardless of encryption method and system load. The model flagged all attacks tested.
Real-Time Adaptive Sensor Attack Detection in Autonomous Cyber-Physical Systems. 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS). :237—250.
.
2021. Cyber-Physical Systems (CPS) tightly couple information technology with physical processes, which rises new vulnerabilities such as physical attacks that are beyond conventional cyber attacks. Attackers may non-invasively compromise sensors and spoof the controller to perform unsafe actions. This issue is even emphasized with the increasing autonomy in CPS. While this fact has motivated many defense mechanisms against sensor attacks, a clear vision on the timing and usability (or the false alarm rate) of attack detection still remains elusive. Existing works tend to pursue an unachievable goal of minimizing the detection delay and false alarm rate at the same time, while there is a clear trade-off between the two metrics. Instead, we argue that attack detection should bias different metrics when a system sits in different states. For example, if the system is close to unsafe states, reducing the detection delay is preferable to lowering the false alarm rate, and vice versa. To achieve this, we make the following contributions. In this paper, we propose a real-time adaptive sensor attack detection framework. The framework can dynamically adapt the detection delay and false alarm rate so as to meet a detection deadline and improve the usability according to different system status. The core component of this framework is an attack detector that identifies anomalies based on a CUSUM algorithm through monitoring the cumulative sum of difference (or residuals) between the nominal (predicted) and observed sensor values. We augment this algorithm with a drift parameter that can govern the detection delay and false alarm. The second component is a behavior predictor that estimates nominal sensor values fed to the core component for calculating the residuals. The predictor uses a deep learning model that is offline extracted from sensor data through leveraging convolutional neural network (CNN) and recurrent neural network (RNN). The model relies on little knowledge of the system (e.g., dynamics), but uncovers and exploits both the local and complex long-term dependencies in multivariate sequential sensor measurements. The third component is a drift adaptor that estimates a detection deadline and then determines the drift parameter fed to the detector component for adjusting the detection delay and false alarms. Finally, we implement the proposed framework and validate it using realistic sensor data of automotive CPS to demonstrate its efficiency and efficacy.
Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
.
2021. In state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection attack. In this paper, to enforce security of power networks, we propose a method of detecting a false data injection attack. In the proposed method, a false data injection attack is detected by randomly choosing sensors used in state estimation. The effectiveness of the proposed method is presented by two numerical examples including the IEEE 14-bus system.