Biblio
As an efficient deletion method, unlinking is widely used in cloud storage. While unlinking is a kind of incomplete deletion, `deleted data' remains on cloud and can be recovered. To make `deleted data' unrecoverable, overwriting is an effective method on cloud. Users lose control over their data on cloud once deleted, so it is difficult for them to confirm overwriting. In face of such a crucial problem, we propose a Provable and Traceable Assured Deletion (PTAD) scheme in cloud storage based on blockchain. PTAD scheme relies on overwriting to achieve assured deletion. We reference the idea of data integrity checking and design algorithms to verify if cloud overwrites original blocks properly as specific patterns. We utilize technique of smart contract in blockchain to automatically execute verification and keep transaction in ledger for tracking. The whole scheme can be divided into three stages-unlinking, overwriting and verification-and we design one specific algorithm for each stage. For evaluation, we implement PTAD scheme on cloud and construct a consortium chain with Hyperledger Fabric. The performance shows that PTAD scheme is effective and feasible.
In the cloud storage, users lose direct control over their data. How to surely delete data in the cloud becomes a crucial problem for a secure cloud storage system. The existing way to this problem is to encrypt the data before outsourcing and destroy the encryption key when deleting. However, this solution may cause heavy computation overhead for the user-side and the encrypted data remains intact in the cloud after the deletion operation. To solve this challenge problem, we propose a novel method to surely delete data in the cloud storage by overwriting. Different from existing works, our scheme is efficient in the user-side and is able to wipe out the deleted data from the drives of the cloud servers.
Inadvertent exposure of sensitive data is a major concern for potential cloud customers. Much focus has been on other data leakage vectors, such as side channel attacks, while issues of data disposal and assured deletion have not received enough attention to date. However, data that is not properly destroyed may lead to unintended disclosures, in turn, resulting in heavy financial penalties and reputational damage. In non-cloud contexts, issues of incomplete deletion are well understood. To the best of our knowledge, to date, there has been no systematic analysis of assured deletion challenges in public clouds. In this paper, we aim to address this gap by analysing assured deletion requirements for the cloud, identifying cloud features that pose a threat to assured deletion, and describing various assured deletion challenges. Based on this discussion, we identify future challenges for research in this area and propose an initial assured deletion architecture for cloud settings. Altogether, our work offers a systematization of requirements and challenges of assured deletion in the cloud, and a well-founded reference point for future research in developing new solutions to assured deletion.