Biblio
In order to solve privacy protection problem in the Internet of Vehicles environment, a message authentication scheme based on proxy re-signature is proposed using elliptic curves, which realizes privacy protection by transforming the vehicle's signature of the message into the roadside unit's signature of the same message through the trusted center. And through the trusted center traceability, to achieve the condition of privacy protection, and the use of batch verification technology, greatly improve the efficiency of authentication. It is proved that the scheme satisfies unforgeability in ECDLP hard problem in the random oracle model. The efficiency analysis shows that the scheme meets the security and efficiency requirements of the Internet of Vehicles and has certain practical significance.
Road accidents are challenging threat in the present scenario. In India there are 5, 01,423 road accidents in 2015. A day 400 hundred deaths are forcing to India to take car safety sincerely. The common cause for road accidents is driver's distraction. In current world the people are dominated by the tablet PC and other hand held devices. The VANET technology is a vehicle-to-vehicle communication; here the main challenge will be to deliver qualified communication during mobility. The paper proposes a standard new restricted lightweight authentication protocol utilizing key agreement theme for VANETs. Inside the planned topic, it has three sorts of validations: 1) V2V 2) V2CH; and 3) CH and RSU. Aside from this authentication, the planned topic conjointly keeps up mystery keys between RSUs for the safe communication. Thorough informal security analysis demonstrates the planned subject is skilled to guard different malicious attack. In addition, the NS2 Simulation exhibits the possibility of the proposed plan in VANET background.
Nowadays, Vehicular ad hoc network confronts many challenges in terms of security and privacy, due to the fact that data transmitted are diffused in an open access environment. However, highest of drivers want to maintain their information discreet and protected, and they do not want to share their confidential information. So, the private information of drivers who are distributed in this network must be protected against various threats that may damage their privacy. That is why, confidentiality, integrity and availability are the important security requirements in VANET. This paper focus on security threat in vehicle network especially on the availability of this network. Then we regard the rational attacker who decides to lead an attack based on its adversary's strategy to maximize its own attack interests. Our aim is to provide reliability and privacy of VANET system, by preventing attackers from violating and endangering the network. to ensure this objective, we adopt a tree structure called attack tree to model the attacker's potential attack strategies. Also, we join the countermeasures to the attack tree in order to build attack-defense tree for defending these attacks.
Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.
Nowadays, Vehicular ad hoc Network as a special class of Mobile ad hoc Network(MANET), provides plenty of services. However, it also brings the privacy protection issues, and there are conflicts between the privacy protection and the services. In this paper, we will propose a privacy protection algorithm based on group signature including two parts, group signature based anonymous verification and batch verification. The anonymous verification is based on the network model we proposed, which can reduce the trust authority burden by dividing the roadside units into different levels, and the batch verification can reduce the time of message verification in one group. We also prove our algorithm can satisfy the demand of privacy protection. Finally, the simulation shows that the algorithm we proposed is better than the BBS on the length of the signature, time delay and packet loss rate.
In vehicular networks, each message is signed by the generating node to ensure accountability for the contents of that message. For privacy reasons, each vehicle uses a collection of certificates, which for accountability reasons are linked at a central authority. One such design is the Security Credential Management System (SCMS) [1], which is the leading credential management system in the US. The SCMS is composed of multiple components, each of which has a different task for key management, which are logically separated. The SCMS is designed to ensure privacy against a single insider compromise, or against outside adversaries. In this paper, we demonstrate that the current SCMS design fails to achieve its design goal, showing that a compromised authority can gain substantial information about certificate linkages. We propose a solution that accommodates threshold-based detection, but uses relabeling and noise to limit the information that can be learned from a single insider adversary. We also analyze our solution using techniques from differential privacy and validate it using traffic-simulator based experiments. Our results show that our proposed solution prevents privacy information leakage against the compromised authority in collusion with outsider attackers.
Technology coined as the vehicular ad hoc network (VANET) is harmonizing with Intelligent Transportation System (ITS) and Intelligent Traffic System (ITF). An application scenario of VANET is the military communication where vehicles move as a convoy on roadways, requiring secure and reliable communication. However, utilization of radio frequency (RF) communication in VANET limits its usage in military applications, due to the scarce frequency band and its vulnerability to security attacks. Visible Light Communication (VLC) has been recently introduced as a more secure alternative, limiting the reception of neighboring nodes with its directional transmission. However, secure vehicular VLC that ensures confidential data transfer among the participating vehicles, is an open problem. In this paper, we propose a secure military light communication protocol (SecVLC) for enabling efficient and secure data sharing. We use the directionality property of VLC to ensure that only target vehicles participate in the communication. Vehicles use full-duplex communication where infra-red (IR) is utilized to share a secret key and VLC is used to receive encrypted data. We experimentally demonstrate the suitability of SecVLC in outdoor scenarios at varying inter-vehicular distances with key metrics of interest, including the security, data packet delivery ratio and delay.
A major component of modern vehicles is the infotainment system, which interfaces with its drivers and passengers. Other mobile devices, such as handheld phones and laptops, can relay information to the embedded infotainment system through Bluetooth and vehicle WiFi. The ability to extract information from these systems would help forensic analysts determine the general contents that is stored in an infotainment system. Based off the data that is extracted, this would help determine what stored information is relevant to law enforcement agencies and what information is non-essential when it comes to solving criminal activities relating to the vehicle itself. This would overall solidify the Intelligent Transport System and Vehicular Ad Hoc Network infrastructure in combating crime through the use of vehicle forensics. Additionally, determining the content of these systems will allow forensic analysts to know if they can determine anything about the end-user directly and/or indirectly.